Log in

Solar Flares, Strong Magnetic Storms, and Variations in the Level of Seismic Noise in the Northern Tien Shan

  • PART 1. COSMIC FACTORS, THEIR IMPACT ON TERRESTRIAL PROCESSES AND HUMANS
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The relationship between strong magnetic storms caused by X-class solar flares in solar cycles 23 and 24 and seismicity variations (seismic noise) is considered. We use data on the time dependences of seismic noise parameters (root-mean-square deviation (RMS)) recorded by stations of the KNET seismic network when monitoring the seismicity of the territory of the Bishkek geodynamic proving ground (Northern Tien Shan). Signs of the influence of a magnetic storm that occurred after strong solar flares on the seismic process are noted. It is shown that an increase in seismic noise after a super-strong solar flare on September 6, 2017, is caused by an earthquake in Mexico (September 8, 2017, M = 8.1), and the earthquake itself may have been triggered by the flare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Adushkin, V.V., Ryabova, S.A., Spivak, A.A., and Kharlamov, V.A., Response of the seismic background to geomagnetic variations, Dokl. Earth Sci., 2012, vol. 444, no. 1, pp. 642–646.

    Article  Google Scholar 

  2. Adushkin, V.V., Ryabova, S.A., and Spivak, A.A., Geomagnitnye effekty prirodnykh i tekhnogennykh protsessov (Geomagnetic Effects of Natural and Technogenic Processes), Moscow: GEOS, 2021. https://doi.org/10.34756/GEOS.2021.16.37855

  3. Bezrodnykh, I.P., Morozova, E.I., Petrukovich, A.A., Kozhukhov, M.V., and Pavlov, Yu.S., Dynamics of the Kp-indeksa geomagnetic activity for seven solar cycles (from 1932 to 2014): Seasonal variations, Vopr. Elektromekh. Tr. VNIIEM, 2018, vol. 167, no. 6, pp. 48–54.

    Google Scholar 

  4. Bogomolov, L.M., Avagimov, A.A., Bragin, V.D., Zakupin, A.S., Zeigarnik, V.A., Sychev, V.N., Sycheva, N.A., Shavlygin, V.M., and Shchelochkov, G.G., Correlation analysis of local seismicity at the Bishkek geodynamic polygon in relation to the problem of active monitoring, in Geofizika XXI stoletiya: 2005 god: Sb. trudov Sed’mykh geofizicheskikh chtenii im. V.V. Fedynskogo (Geophysics of the 21st Century: The Year of 2025: Proceedings of the Seventh V.V. Fedynskii Geophysical Readings), Moscow: Nauchnyi Mir, 2006, pp. 317–325.

  5. Bogomolov, L.M., Zakupin, A.S., and Sychev, V.N., Elektrovozdeistviya na zemnuyu koru i variatsii slaboi seismichnosti (Electric Impacts on the Earth’s Crust and Weak Seismicity Variations), Saarbrücken: Lambert Acad. Publ., 2011.

  6. Fainberg, E.B., Avagimov, A.A., Zeigarnik, V.A., and Vasil’eva, T.A., Generation of heat flows in the Earth’s interior by global geomagnetic storms, Izv., Phys. Solid Earth, 2004, vol. 40, no. 4, pp. 315–322.

    Google Scholar 

  7. Gul’el’mi, A.V., Lavrov, I.P., Sobisevich, A.L., Sudden commencements of magnetic storms and earthquakes, Soln.-Zemnaya Fiz., 2015, vol. 1, no. 1, pp. 98–103.

    Article  Google Scholar 

  8. Kozyreva, O.V. and Pilipenko, V.A., On the relationship between geomagnetic disturbance and seismic activity for the Alaska region, Geofiz. Issled., 2020, vol. 21, no. 1, pp. 33–49. https://doi.org/10.21455/gr2020.1-3

    Article  Google Scholar 

  9. Love, J.J. and Thomas, J.N., Insignificant solar–terrestrial triggering of earthquakes, Geophys. Res. Lett., 2013, vol. 40, pp. 1165–1170. https://doi.org/10.1002/grl.50211

    Article  Google Scholar 

  10. Ohl, A.I., Indices of the Earth’s magnetic field disturbance and their heliogeophysical value, Tr. Arkt. Antarkt. Nauchno-Issled. Inst., 1969, vol. 289, pp. 5–21.

    Google Scholar 

  11. Ohl, A.I., On the physical nature of 11-year variations of magnetic disturbances, Geomagn. Aeron., 1971, vol. 11, no. 4, pp. 647–650.

    Google Scholar 

  12. Orlov, V.A., Panov, S.V., Parushkin, M.D., and Fomin, Yu.N., On the relation between the Earth’s seismicity and solar activity from the results of precision deformation observations, in Geodinamika i napryazhennoe sostoyanie nedr Zemli (Geodynamics and Stress State of the Earth’s Interior), Novosibirsk: Inst. gornogo dela SO RAN, 2008, pp. 31–40.

  13. Orlov, V.A., Panov, S.V., Parushkin, M.D., and Fomin, Yu.N., Solar activity, oscillations of the Earth’s inner core, and general planetary seismicity, in Geodinamika vnutrikontinental’nykh orogenov i geoekologicheskie problemy (Geodynamics of Intracontinental Orogens and Geoecological Problems), Leonov, Yu.G., Ed., Bishkek, 2009, pp. 321–326.

  14. J. Peterson, Observation and modeling of seismic background noise, U.S. Geol. Surv. Open-File Rep. 93-322, 1993, pp. 1–95.

    Book  Google Scholar 

  15. Sobolev, G.A., Zakrzhevskaya, N.A., and Kharin, E.P., On the relation between seismicity and magnetic storms, Izv., Phys. Solid Earth, 2001, vol. 37, no. 11, pp. 917–927.

    Google Scholar 

  16. Sobolev, G.A., Zakrzhevskaya, N.A., Migunov, I.N., Sobolev, D.G., and Boiko, A.N., Effect of magnetic storms on low-frequency seismic noise, Izv., Phys. Solid Earth, 2020, vol. 56, no. 3, pp. 291–315. https://doi.org/10.1134/S106935132003009X

    Article  Google Scholar 

  17. Streckeisen, G., Portable Very Broad-Band Triaxial Seismometer: STS-2 Manual, Pfungen, Switzerland, 1990.

    Google Scholar 

  18. Sycheva, N.A., Bogomolov, L.M., and Sychev, V.N., On geoeffective solar flares and variations of the seismic noise level, Izv., Phys. Solid Earth, 2011, vol. 47, no. 3, pp. 207–222.

    Article  Google Scholar 

  19. Sycheva, N.A., Bogomolov, L.M., and Kuzikov, S.I., Vychislitel’nye tekhnologii v seismologicheskikh issledovaniyakh (na primere KNET, Severnyi Tyan’-Shan’) (Computational Technologies in Seismological Research (Using KNET, Northern Tien Shan, as a Test Case)), Yuzhno-Sakhalinsk: IMGiG DVO RAN, 2020a.

  20. Sycheva, N.A., Sychev, I.V., Mansurova, A.N., and Kuzikov, S.I., A study of seismic noise level at the KNET stations, J. Volcanol. Seismol., 2020b, vol. 14, no. 4, pp. 229–245.

    Article  Google Scholar 

  21. Tarasov, N.T., On solar activity effect on the Earth’s seismicity, in Triggernye effekty v geosistemakh: Materialy IV Vseros. konf. s mezhdunar. uchastiem (Trigger Effects in Geosystems: Proceedings of the IV All-Russian Conference with International Attendance), Adushkin, V.V. and Kocharyan, G.G., Eds., 2017, pp. 356–365.

  22. Tarasov, N.T., Solar activity effect on the Earth’s seismicity, Inzh. Fiz., 2019a, no. 6, pp. 23–33.

  23. Tarasov, N.T., Solar activity and trigger effects in seismoactive regions of the Earth, Triggernye effekty v geosistemakh: Tez. dokl. V Mezhdunar. konf. (Trigger Effects in Geosystems: Proceedings of the V International Conference), Moscow: GEOS, 2019b, pp. 198–199.

  24. Tarasov, N.T., Solar activity effect on the electromagnetic fields and seismicity of the Earth, Oral presentation at the VIII International Symposium “Problems of Geodynamics and Geoecology of Intracontinental Orogens”, Bishkek, June 28–July 2, 2021.

  25. Vladimirskii, B.M., Space weather and the biosphere–noosphere–technosphere: Interaction mechanisms, Nauka Tekhnol. Razrab., 2016, vol. 9, no. 1, pp. 22–36.

    Google Scholar 

  26. Wielandt, E. and Streckeisen, G., The leaf-spring seismometer: Design and performance, Bull. Seismol. Soc. Am., 1982, vol. 72, no. 6, pp. 2349–2367.

    Google Scholar 

  27. Zakrzhevskaya N.A. and Sobolev G.A. On the seismicity effect of magnetic storms, Izv., Phys. Solid Earth, 2002, vol. 38, no. 4, pp. 249–261.

    Google Scholar 

  28. Zakrzhevskaya N.A. and Sobolev G.A. Effect of magnetic storms with sudden commencement on seismicity in various regions, Vulkanol. Seismol., 2004, no. 3, pp. 63–75.

Download references

ACKNOWLEDGMENTS

The author of the article is grateful to A.N. Mansurov for the software for plotting the RMS distribution of seismic noise with the overlay of data on solar flares and magnetic storms.

Funding

This study was carried out under the State Task of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Sycheva.

Ethics declarations

The author declares that they has no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sycheva, N.A. Solar Flares, Strong Magnetic Storms, and Variations in the Level of Seismic Noise in the Northern Tien Shan. Izv. Atmos. Ocean. Phys. 58 (Suppl 1), S17–S32 (2022). https://doi.org/10.1134/S0001433822130102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822130102

Keywords:

Navigation