Log in

Biogeochemical Changes in Lake Ladoga: Insights from Satellite Data

  • USE OF SPACE INFORMATION ABOUT THE EARTH SATELLITE STUDIES OF LAND WATERS
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The trophic system of the largest freshwater lake in Europe, Ladoga, is in a state of transformation. Initially oligotrophic, the lake became mesotrophic as a result of anthropogenic eutrophication in the late 1950s. Anthropogenic nutrient loads have been sharply reduced since the late 1990s and the status of the lake is changing again, this time against a background of climate warming. Based on MODIS Aqua data, a numerical evaluation of these changes over the past 18 years (2003–2020) was carried out through assessment of the dynamics of the concentration of chlorophyll (CHL) of phytoplankton, mineral suspended matter (SM) and colored dissolved organic matter (CDOM). The observed decrease in CDOM concentration concurringly with the decline of the CHL concentration might speak in favor of continuing supply of digestible phosphorus into the lake due to the lysis of dissolved allochthonous organic matter. This is able to slow down the return of the lake to the initially oligotrophic state regardless of the reported continuing decline of the lake average inorganic phosphorus concentration. It is shown that the climatic impact is manifested, in particular, in the expansion of the time period of biological activity at the primary production level: the growth of phytoplankton becomes appreciable in March, while its end is shifted to between October and November. At the same time, the intra-annual dynamics of CHL has increased presumably due to high occurrence of extreme meteorological conditions, which is a feature of ongoing climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 4.
Fig. 5.

REFERENCES

  1. Albert, A. and Mobley, C., An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters, Ocean Opt., 2003, vol. 11, pp. 2873–2890.

    Google Scholar 

  2. Anokhin, V., Geomorphology and typification of the shores of Ladoga from the imagers taken by a pilotless aircraft, Geomorphology, 2019, vol. 1, pp. 25–37.

    Article  Google Scholar 

  3. Atlas: Lake Ladoga and Attractions of Its Coast, Rumjantsev, V.A., Sorokin, A.I., and Nesterov, N.A., Eds., St. Petersburg: Nestor-History Publ., 2015.

    Google Scholar 

  4. Bennion, H., Simpson, G., and Goldsmith, B., Assessing degradation and recovery pathways in lakes impacted by eutrophication using the sediment method, Front. Ecol. Evol., 2015, vol. 3. https://doi.org/10.3389/fevo.2015.00094

  5. Boddy, R. and Smith, G., Statistical Methods in Practice: for Scientists and Technologists, John Wiley and Sons, 2009.

    Book  Google Scholar 

  6. Bukata, R., Jerome, J., Kondratyev, K., and Pozdnyakov, D., Optical Properties and Remote Sensing of Inland and Coastal Waters, New York: CRC Press, 1995.

    Google Scholar 

  7. Bukata, R.P., Pozdnyakov, D.V., Jerome, J.H., and Tanis, F.J., Validation of a radiometric color made applicable to optically complex water bodies, Remote Sens. Environ., 2001, vol. 77, pp. 165–172.

    Article  Google Scholar 

  8. Diagnosis and Forecast of Thermohydrodynamics and Ecosystems of the Great Lakes of Russia, Filatov, N.N., Ed., Petrozavodsk: Karelian Research Center of the Russian Academy of Sciences, 2020.

    Google Scholar 

  9. Filatov, N.N. and Pozdnyakov, D.V., A comparative analysis of the present state of large lakes in Northern Europe and America, in Lake Ladoga. Monitoring, Investigations of Current State and Management Problems of Lake Ladoga and Other Lakes, Filatov, N.N., Ed., Petrozavodsk: Karelian Research Center of the Russian Academy of Sciences, 2000, pp. 17–32.

    Google Scholar 

  10. Filatov, N. and Rukhovets, L., Ladoga Lake and Onega Lake (Lakes Ladozhskoye and Onezhskoye), in Encyclopedia of Lakes and Reservoirs, Encyclopedia of Earth Sciences Series, Bengtsson, L., Herschy, R.W., and Fairbridge, R.W., Eds., Dordrecht: Springer, 2012, pp. 429–432. https://doi.org/10.1007/978-1-4020-4410-6_197.

  11. Filatov, N.N., Nazarova, L.E., and Georgiev, A.P., Variations and variability of climate in the European North of Russia, and their Influence on aquatic environments, Arctic: Ecol. Econ., 2012, vol. 2, pp. 80–93.

    Google Scholar 

  12. Filatov, N., Baklagin, V., Efremova, T., Nazarova, L., and Palshin, N., Climate change impacts on the watersheds of Lakes Onega and Ladoga from remote sensing and in situ data, Inland Waters, 2019a, vol. 9, no. 2, pp. 130–141. https://doi.org/10.1080/20442041.2018.1533355

    Article  Google Scholar 

  13. Filatov, N.N., Isaev, A.V., and Savchuk, O.P., Assessment of the current state and forecasting of changes in the hydrological regime and ecosystems of large lakes, Trans. Karel. Sci. Center of the Russ. Acad. Sci., 2019b, vol. 3, pp. 1–15.

    Google Scholar 

  14. Gbagir, A.-M.G. and Colpaert, A., Assessing the trend of the trophic state of Lake Ladoga based on multi-year (1997–2019) CMEMS GlobColour-Merged CHL-OC5 satellite observations, Sensors, 2020, vol. 20, no. 6881. https://doi.org/10.3390/s20236881

  15. Guseva, M. and Ignatieva, N., Oxygen and pH, in Current State and Problems of Anthropogenic Transformation of the Ladoga Lake Ecosystem Under Conditions of Changing Climate, Kondratyev, S., Pozdnyakov, D., and Rumyantsev, V., Eds., Moscow: RAS, 2021, pp. 251–258.

    Google Scholar 

  16. Hessen, D.O., Carroll, J.-L., Kjeldstad, B., Korosov, A.A., Pettersson, L.H., Pozdnyakov, D.V., and Sorensen, K., Input of organic carbon as determinant of nutrient fluxes, light climate and productivity in the Ob and Yenisei estuaries, Estuarine Coast and Shelf Sci., 2010, vol. 88, pp. 53–62. https://doi.org/10.1016/j.ecss.2010.03.006

    Article  Google Scholar 

  17. Holopainen, A.M. and Letanskaya, G.I., Lake summer phytoplankton communities in the northern part of Lake Ladoga, in Proceedings of the Third International Lake Ladoga Symposium-1999, Peltonen, A., Gronlund, E., and Viljanen, M., Eds., Joensuu: Springer, 2000, pp. 55–60.

  18. Iofina, I.V., Structure and functional characteristics of aquatic microflora, in Lake Ladoga: Criteria of the Ecosystem State, Petrova, N.A., Terzhevik and A.Yu., Eds., St. Petersburg: Nauka, 2002, pp. 167–171.

  19. Izmailova, A., Climate of the Ladoga Lake watershed, in Current State and Problems of Anthropogenic Transformation of the Ladoga Lake Ecosystem Under Conditions of Changing Climate, Kondratyev, S., Pozdnyakov, D., and Rumyantsev, V., Eds., Moscow: RAS, 2021, pp. 26–28.

    Google Scholar 

  20. Jerome, J.H., Bukata, R.P., and Miller, J.R., Remote sensing reflectance and its relationship to optical properties of natural water, Int. J. Remote Sens., 1996, vol. 17, pp. 43–52. https://doi.org/10.1080/01431169608949135

    Article  Google Scholar 

  21. Jonson, A., Meili, M., Bergstrom, A.K., and Jansson, M., Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Ortrasket, N. Sweden), Limnol. Oceanogr., 2001, vol. 46, no. 7, pp. 1691–1700. https://doi.org/10.4319/lo.2001.46.7.1691

    Article  Google Scholar 

  22. Kalinkina, N., Tekanova, E., Korosov, A., Zobkov, M., and Ryzhakov, A., What is the extent of water brownification in Lake Onega, Russia?, J. Great Lakes Res., 2020, vol. 46, no. 4, pp. 850–861. https://doi.org/10.1016/j.jglr.2020.02.008

    Article  Google Scholar 

  23. Karetkikov, S., Lepparanta, M., and Montonen, A., A time series of over 100 years of ice seasons on Lake Ladoga, J. Great Lakes Res., 2017, vol. 43, no. 6, pp. 979–988. https://doi.org/10.1016/j.jglr.2017.08.010

    Article  Google Scholar 

  24. Kondratyev, S., Shmakova, M., and Korobchenkova, K., Land runoff in conditions of climate change, in Current State and Problems of Anthropogenic Transformation of the Ladoga Lake Ecosystem Under Conditions of Changing Climate, Kondratyev, S., Pozdnyakov, D., and Rumyantsev, V., Eds., Moscow: RAS, 2021, pp. 102–108.

    Google Scholar 

  25. Kondrik, D.V., Pozdnyakov, D.V., and Pettersson, L.H., Particulate inorganic carbon production within E. huxleyi blooms in subpolar and polar seas: A satellite time series study (1998–2013), Int. J. Remote Sens., 2017, vol. 38, no. 22, pp. 6179–6205. https://doi.org/10.1080/01431161.2017.1350304

    Article  Google Scholar 

  26. Korkishko, N.N., Koulish, T.P., Petrova, T.N., and Chernykh, O.A., Aquatic organic matter in Lake Ladoga and the processes of its transformation, Ecol. Chem., 2000, vol. 9, pp. 221–229.

    Google Scholar 

  27. Korosov, A.A., Pozdnyakov, D.V., Pettersson, L.H, and Grassl, H., Satellite data-based study of seasonal and spatial variations of some ecoparameters in Lake Ladoga, J. Appl. Remote Sens., 2007, vol. 1, 011508. https://doi.org/10.1117/1.2834770.4

    Article  Google Scholar 

  28. Korosov, A.A., Pozdnyakov, D., and Grassl, H., Spaceborne quantitative assessment of dissolved organic carbon fluxes in the Kara Sea, Adv. Space Res., 2011, vol. 50, no. 8, pp. 1173–1188. https://doi.org/10.1016/j.asr.2011.10.008

    Article  Google Scholar 

  29. Kurashov, E., Importance of meiobenthos for monitoring, in Lake Ladoga. Monitoring, in Investigations of Current State and Management Problems of Lake Ladoga and Other Lakes, Filatov, N.N., Ed., Petrozavodsk: Karelian Sci. Center, RAS, 2000, pp. 223–230.

  30. Kurashov, E.A., Barbashova, V.A., Dudakova, D.S., Kapustina, L.L., Iofina, I.V., Protopopova, E.V., Rodionova, N.V., and Trifonova, M.S., Ladoga Lake ecosystem: Present-day conditions and trends in the late XX to early XXI century, Biosphere, 2018, vol. 10, no. 2, pp. 65–121. https://doi.org/10.24855/biosfera.v10i2.439

    Article  Google Scholar 

  31. Letanskaya, G.I. and Protopopova, E.V., The current state of phytoplankton in Lake Ladoga (2005–2009), Inland Water Biol., 2012, vol. 5, no. 4, pp. 310–316. https://doi.org/10.1134/S1995082912040104

    Article  Google Scholar 

  32. Levenberg, K., A method for the solution of certain non-linear problems in least squares, Quant. Appl. Math., 1944, vol. 2, pp. 164–168.

    Article  Google Scholar 

  33. Ludikova, A., Long-term studies of surface-sediment diatom assemblages in assessing the ecological state of Lake Ladoga, the largest European lake, Geogr., Environ., Sustainability, 2021, vol. 14, no. 1, pp. 251–262.

    Google Scholar 

  34. Malm, J., Mironov, D., Terzhevik, A., and Jonsson, L., Investigation of the spring thermal regime in Lake Ladoga using field and satellite data, Limnol. Oceanogr., 1994, vol. 39, no. 6, pp. 1333–1348. https://doi.org/10.4319/lo.1994.39.6.1333

    Article  Google Scholar 

  35. Marquardt, D.W., An algorithm for least-squares estimation of non-linear parameters, J. Int. Soc. Appl. Math., 1963, vol. 11, no. 2, pp. 36–48.

    Google Scholar 

  36. McManus, J., Heinen, E.A., and Baehr, M.M., Hypolimnetic oxidation rates in Lake Superior. Role of dissolved organic material on the lake’s carbon budget, Limnol. Oceanogr., 2003, vol. 48, no. 4, pp. 1624–1632. https://doi.org/10.4319/lo.2003.48.4.1624

    Article  Google Scholar 

  37. Naumenko, M., Guzivaty, D., and Karetnikov, S., Specific thermal and ice cover changes in Lake Ladoga in the early 21st century, in Geoecological Problems and Sustainable Development of the Baltic Region, Davydova, S.G., Dmitruk, N.G., and Stepanova, A., Eds., 2017, pp. 50–55.

    Google Scholar 

  38. Neverova-Dziopak, E. and Tsvetkova, L., Assessment of the Trophic State of Surface Waters, SPU Publ., 2020.

    Google Scholar 

  39. Petrenko, D., Pozdnyakov, D., Johannessen, J., Counillon, F., and Sychov, V., Satellite derived multi-year trend in primary production in the Arctic Ocean, Int. J. Remote Sens., 2013, vol. 34, no. 11, pp. 3903–3937. https://doi.org/10.1080/01431161.2012.762698

    Article  Google Scholar 

  40. Petrova, T. and Ignatieva, N., Hydrochemistry of Lake Ladoga. Organic matter, in Current State and Problems of Anthropogenic Transformation of the Ladoga Lake Ecosystem Under Conditions of Changing Climate, Kondratyev, S., Pozdnyakov, D., and Rumyantsev, V., Eds., Moscow: RAS, 2021, pp. 258–270.

    Google Scholar 

  41. Petrova, T. and Ignatieva, N., Hydrochemistry of Lake Ladoga. Phosphorus compounds, in Current State and Problems of Anthropogenic Transformation of the Ladoga Lake Ecosystem Under Conditions of Changing Climate, Kondratyev, S., Pozdnyakov, D., and Rumyantsev, V., Eds., Moscow: RAS, 2021, pp. 287–300.

    Google Scholar 

  42. Petrova, T. and Ignatieva, N., Hydrochemistry of Lake Ladoga. Suspended matter, in Current State and Problems of Anthropogenic Transformation of the Ladoga Lake Ecosystem Under Conditions of Changing Climate, Kondratyev, S., Pozdnyakov, D., and Rumyantsev, V., Eds., Moscow: RAS, 2021, pp. 287–300.

    Google Scholar 

  43. Petrova, N.A., Iofina, I.V., Kapoustina, L.L., Koulish, T.P., Petrova, T.N., and Raspletina, G.F., Anthropogenic eutrophication of Lake Ladoga: Stages of the ecosystem transformation between 1975 and 2004, Ecol. Chem., 2005, vol. 14, no. 4, pp. 209–234.

    Google Scholar 

  44. Petrova, N.A., Petrova, T.N., Susareva, O.M., and Iofina, I.V., Specific features the Lake Ladoga ecosystem evolution under of anthropogenic eutrophication (1975–2007), Water Resour., 2010, vol. 37, no. 5, pp. 580–589.

    Article  Google Scholar 

  45. Pozdnyakov, D.V. and Filatov, N.N., Interannual water quality variations in Lake Ladoga in spring during 2016 and 2017: Satellite observations, Fundam. Appl. Hydrophys., 2021, vol. 14, no. 1, pp. 79–85. https://doi.org/10.7868/S2073667321010081

    Article  Google Scholar 

  46. Pozdnyakov, D.V. and Grassl, H., Colour of Inland and Coastal Waters: A Methodology for Its Interpretation, Chichester: Springer-Praxis, 2003.

    Google Scholar 

  47. Pozdnyakov, D.V., Johannessen, O.M., Korosov, A.A., Pettersson, L.H., Grassl, H.G., and Miles, M.W., Satellite evidence of ecosystem changes in the White Sea: A semi-enclosed Arctic marginal shelf sea, Geophys. Res. Lett., 2007, vol. 34, L08604. https://doi.org/10.1029/2006GL028947

    Article  Google Scholar 

  48. Pozdnyakov, D., Korosov, A., Petrova, N., and Grassl, H., Multi-year satellite observations of Lake Ladoga’s biogeochemical dynamics in relation to the lake’s trophic status, J. Great Lakes Res., 2013, vol. 3, pp. 34–45.

    Article  Google Scholar 

  49. Pozdnyakov, D., Kondrik, D., Kazakov, E., and Chepikova, S., Environmental conditions favoring coccolithophore blooms in subarctic and arctic seas: A 20-year satellite and multidimensional statistical study, Proc. SPIE-Int. Soc. Opt. Eng., Remote Sensing of the Ocean. 9-12 September Strasbourg, France, 2019. https://doi.org/10.1117/12.2547868

  50. Press, W.H., Teukolsky, S.A., Vettering, W.T., and Flannery, B.P., Numerical Recipes in C: The Art of Scientific Computing, New York: Cambridge University Press, 1992.

    Google Scholar 

  51. Protopopova, E., Hydrobiology of Lake Ladoga. Phytoplankton, in Current State and Problems of Anthropogenic Transformation of the Ladoga Lake Ecosystem Under Conditions of Changing Climate, Kondratyev, S., Pozdnyakov, D., and Rumyantsev, V., Eds., Moscow: RAS, 2021, pp. 300–310.

    Google Scholar 

  52. Raspletina, G., Hydrochemistry in Lake Ladoga, in Hydrochemistry and Hydrooptics in Lake Ladoga, Alekin, O.A., Ed., Leningrad: Nauka, 1967, pp. 6–122.

    Google Scholar 

  53. Raspletina, G. and Gusakov, B., The status of nutrients in Lake Ladoga during the period of anthropogenic eutrophication, Trans. State Hydrol. Inst., 1988, vol. 321, pp. 66–73.

    Google Scholar 

  54. Roumyantsev, V.A. and Drabkova, V.G., Lake Ladoga: Past, Present and Future, St. Petersburg: Nauka, 2002.

    Google Scholar 

  55. Rukhovets, L. and Filatov, N., Ladoga and Onega: Great European lakes: Observations and modelling, in The Great European Lakes: A State of the Art, Springer, 2010, pp. 1–65.

    Book  Google Scholar 

  56. Rumyantsev, V.A., General introduction, in Current State and Problems of Anthropogenic Transformation of the Ladoga Lake Ecosystem Under Conditions of Changing Climate, Kondratyev, S., Pozdnyakov, D., and Rumyantsev, V., Eds., Moscow: RAS, 2021.

    Google Scholar 

  57. Sathyendranath, S., Remote sensing of ocean colour in coastal, and other optically complex, waters, in Reports of the International Ocean-Colour Coordinating Group, IOCCG, 2000, pp. 5–21.

    Google Scholar 

  58. Shmakova, M., Watershed drainage and water turbidity, in Current State and Problems of Anthropogenic Transformation of the Ladoga Lake Ecosystem Under Conditions of Changing Climate, Kondratyev, S., Pozdnyakov, D., and Rumyantsev, V., Eds., Moscow: RAS, 2021, pp. 108–113.

    Google Scholar 

  59. Shuchman, R., Korosov, A., Hatt, C., Pozdnyakov, D., Means, J., and Meadows, G., Verification and application of a bio-optical algorithm for Lake Michigan: Using SeaWiFS: A 7-year interannual analysis, J. Great Lakes Res., 2006, vol. 32, pp. 258–279. https://doi.org/10.3394/0380-1330(2006)32[258:VAAOAB]2.0.CO;2

    Article  Google Scholar 

  60. Sokoletsky, L.G., Lunetta, R.S., Wetz, M.S., and Paerl, H.W., Assessment of the water quality components in turbid estuarine waters based on radiative transfer approximations, Isr. J. Plant. Sci., 2012, vol. 60, pp. 209–229. https://doi.org/10.1560/IJPS.60.1-2.209

    Article  Google Scholar 

  61. Stoecker, D.K. and Lavrentyev, P.J., Mixotrophic plankton in the polar seas: A pan-Arctic review, Front. Mar. Sci., 2018, vol. 5, pp. 1–12. https://doi.org/10.3389/fmars.2018.0029

    Article  Google Scholar 

  62. Tikhomirov, A.I., Thermal Regime of Large Lakes, Leningrad: Nauka, 1982.

    Google Scholar 

  63. Wei, J., Lee, Z., and Shang, S., A system to measure the data quality of spectral remote sensing reflectance of aquatic environments, J. Geophys. Res.: Oceans, 2016, vol. 121, pp. 8189–8207. https://doi.org/10.1002/2016JC012126

    Article  Google Scholar 

  64. Wetzel, R.G., Death, detritus and energy flow in aquatic ecosystems, Freshwater Biol., 1995, vol. 33, pp. 83–89. https://doi.org/10.1111/j.1365-2427.1995.tb00388.x

    Article  Google Scholar 

  65. Williamson, C.E., Morris, D.P., Pace, M.L., and Olson, O.G., Dissolved organic carbon and nutrients as regulator of lake ecosystems. Resurrection of a more integrated paradigm, Limnol. Oceanogr., 1999, vol. 4, pp. 795–803. https://doi.org/10.4319/lo.1999.44.3_part_2.0795

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Part of this work was fulfilled at Marine Hydrophysical Institute under the topic: 0555-2021-0003 “Oceanological processes” of the State task. We also acknowledge the help extended by Dr. D. Kondrik in performing satellite data downloading. We are grateful to A. Balagansky and N. Makhalskaya for providing hydrometeorological data.

Funding

The research was performed with the financial support under the project #13.2251.21.0006 assigned by the Russian Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Pozdnyakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, E.A., Pozdnyakov, D.V., Filatov, N.N. et al. Biogeochemical Changes in Lake Ladoga: Insights from Satellite Data. Izv. Atmos. Ocean. Phys. 58, 1494–1508 (2022). https://doi.org/10.1134/S0001433822120167

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822120167

Keywords:

Navigation