Log in

Detection from Space of Anomalous Variations in Thermal Fields during Seismic Events in the Northern Caucasus in 2017–2022

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING CATASTROPHIC NATURAL PROCESSES FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Changes in thermal fields during the period leading up to and during earthquakes (magnitude of 4.2–4.8) in the North Caucasus between 2017 and 2022 are studied based on satellite data. The Earth’s surface and near-surface air temperatures, outgoing long-wave radiation, and relative humidity near the surface recorded from space are analyzed. The changes in thermal fields during the preparation of seismic events are compared for earthquakes with epicenters located in zones of similar geological structures, such as the fold-block structures of the Greater Caucasus and the Pre-Caucasian foredeep. Similarities between the variations in the temperature, relative humidity, and fluctuations of outgoing longwave radiation are revealed for a number of earthquakes. The most similar character of the variations is for the normalized values of outgoing long-wave radiation during the preparation of all seismic events analyzed, despite the different positions of their epicenters. Hence, these parameters can be used as short-term precursors of seismic events detectable from space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Akopian, S.Ts., Bondur, V.G., and Rogozhin, E.A., Technology for monitoring and forecasting strong earthquakes in Russia with the use of the seismic entropy method, Izv., Phys. Solid Earth, 2017, vol. 53, no. 1, pp. 32–51. https://doi.org/10.1134/S1069351317010025

    Article  Google Scholar 

  2. Bondur, V.G. and Smirnov, V.M., Method for monitoring seismically hazardous territories by ionospheric variations recorded by satellite navigation systems, Dokl. Earth Sci., 2005, vol. 403, no. 5, pp. 736–740.

    Google Scholar 

  3. Bondur, V.G. and Voronova, O.S., Study of thermal fields before strong earthquakes in Turkey on March 8, 2010 (M = 6.1), and January 24, 2020 (M = 6.7), Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 9, pp. 991–10002. https://doi.org/10.1134/S0001433821090425

    Article  Google Scholar 

  4. Bondur, V.G. and Zverev, A.T., Satellite method of earthquake forecast based on the analysis of lineament system dynamics, Issled. Zemli Kosmosa, 2005, no. 3, pp. 37–52.

  5. Bondur, V.G., Garagash, I.A., Gokhberg, M.B., and Rodkin, M.V., The evolution of the stress state in Southern California based on the geomechanical model and current seismicity, Izv., Phys. Solid Earth, 2016a, vol. 52, no. 1, pp. 117–128. https://doi.org/10.1134/S1069351316010043

    Article  Google Scholar 

  6. Bondur, V.G., Garagash, I.A., and Gokhberg, M.B., Large-scale interaction of seismically active tectonic provinces: The example of Southern California, Dokl. Earth Sci., 2016b, vol. 466, no. 2, pp. 183–186. https://doi.org/10.1134/S1028334X16020100

    Article  Google Scholar 

  7. Bondur, V.G., Tsidilina, M.N., Gaponova, E.V., and Voronova, O.S., Systematization of ionospheric, geodynamic, and thermal precursors of strong (M >= 6) earthquakes detected from space, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 9, pp. 1172–1185. https://doi.org/10.1134/S0001433818090475

    Article  Google Scholar 

  8. Bondur, V.G., Tsidilina, M.N., Gaponova, E.V., and Voronova, O.S., Joint analysis of anomalies of different geophysical fields, recorded from space before strong earthquakes in California, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 9, pp. 1502–1519. https://doi.org/10.1134/S000143382012035X

    Article  Google Scholar 

  9. Dobrovolskii, I.A., Zubkov, S.I., and Myachkin, V.I., On the assessment of the size of the zone of earthquake precursor manifestation, in Modelirovanie predvestnikov zemletryasenii (Modeling of Earthquake Precursors), Moscow: Nauka, 1980, pp. 7–14.

  10. Dzeboev, B.A., Soloviev, A.A., Dzeranov, B.V., Karapetyan, J.K., and Sergeeva, N.A., Strong earthquake-prone areas recognition based on the algorithm with a single pure training class. II. Caucasus, M ≥ 6.0. Variable EPA method, Russ. J. Earth. Sci., 2019, ES6005. https://doi.org/10.2205/2019ES000691

  11. Filizzola, C., Pergola, N., Pietrapertosa, C., and Tramutoli, V., Robust satellite techniques for seismically active areas monitoring: A sensitivity analysis on September 7, 1999 Athens’s earthquake, Phys. Chem. Earth, 2004, vol. 29, pp. 517–527.

    Article  Google Scholar 

  12. Forte, A., Cowgill, E., and Whipple, K.X., Transition from a singly vergent to doubly vergent wedge in a young orogen: The Greater Caucasus, Tectonics, 2014, vol. 33, pp. 2077–2101.

    Article  Google Scholar 

  13. Hearty, T., Savtchenko, A., Theobald, M., Ding, F., Esfandiari, E., and Vollmer, B., Readme document for AIRS version 006 products, Readme, NASA GES DISC Goddard Earth Sci. Data and Inf. Serv. Cent., Greenbelt, Md., 2013.

    Google Scholar 

  14. Ismail-Zadeh, A., Adamia, S., Chabukiani, A., et al., Geodynamics, seismicity, and seismic hazards of the Caucasus, Earth Sci. Rev., 2020, 103222. https://doi.org/10.1016/j.earscirev.2020.103222

  15. Jiao, Z.-H., Zhao, J., and Shan, X., Pre-seismic anomalies from optical satellite observations: A review, Nat. Hazards Earth Syst. Sci., 2018, vol. 18, pp. 1013–1036. https://doi.org/10.5194/nhess-18-1013-2018

    Article  Google Scholar 

  16. Khain, V.E. and Limonov, A.F., Regional’naya geotektonika (Tektonika kontinentov i okeanov) (Regional Geotectonics (Tectonics of Continents and Oceans)), Moscow, 2004.

  17. Ouzounov, D. and Freund, F., Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data, Adv. Space Res., 2004, vol. 33, pp. 268–273.

    Article  Google Scholar 

  18. Ouzounov, D., Liu, D., Chunli, K., Cervone, G., Kafatos, M., and Taylor, P., Outgoing long wave radiation variability from IR satellite data prior to major earthquakes, Tectonophysics, 2007, vol. 431, pp. 211–220.

    Article  Google Scholar 

  19. Prasad, B.S.N., Nagaraja, K., Chandrashekara, M.S., Paramesh, L., and Madhava, M.S., Diurnal and seasonal variations of radioactivity and electrical conductivity near the surface for a continental location Mysore, India, Atmos. Res., 2005, nos. 1–4, pp. 65–77. https://doi.org/10.1016/j.atmosres.2004.11.011

  20. Pulinets, S. and Ouzounov, D., Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model: An unified concept for earthquake precursors validation, J. Asian Earth Sci., 2011, nos. 4–5, pp. 371–382. https://doi.org/10.1016/j.jseaes.2010.03.005

  21. Pulinets, S.A., Ouzounov, D., Karelin, A.V., Boyarchuk, K.A., and Pokhmelnykh, L.A., The physical nature of thermal anomalies observed before strong earthquakes, Phys. Chem. Earth, Parts A/B/C, 2006, vol. 31, nos. 4–9, pp. 143–153. https://doi.org/10.1016/j.pce.2006.02.042

    Article  Google Scholar 

  22. Pulinets, S.A., Bondur, V.G., Tsidilina, M.N., and Gaponova, M.V., Verification of the concept of seismoionospheric coupling under quiet heliogeomagnetic conditions, using the Wenchuan (China) earthquake of May 12, 2008, as an example, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 2, pp. 231–242.

  23. Pulinets, S.A., Uzunov, D.P., Karelin, A.V., and Davidenko, D.V., Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere–atmosphere–ionosphere–magnetosphere system, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 4, pp. 521–538. https://doi.org/10.1134/S0016793215040131

  24. Rogozhin, E.A., Gorbatikov, A.V., Stepanova, M.Y., Ovsyuchenko, A.N., Andreeva, N.V., and Kharazova, Y.V., The structural framework and recent geodynamics of the Greater Caucasus Meganticlinorium in the light of new data on its deep structure, Geotectonics, 2015, vol. 49, no. 1, pp. 123–134. https://doi.org/10.1134/S0016852115020053

    Article  Google Scholar 

  25. Saradjian, M.R. and Akhoondzadeh, M., Prediction of the date, magnitude and affected area of impending strong earthquakes using integration of multi precursors earthquake parameters, Nat. Hazards Earth Syst. Sci., 2011, no. 4, pp. 1109–1119. https://doi.org/10.5194/nhess-11-1109-2011

  26. Smirnov, V.M., Smirnova, E.V., Tsidilina, M.N., and Gaponova, M.V., Seismo-ionospheric variations during strong earthquakes based on the example of the 2010 earthquake in Chile, Cosmic Res., 2018, vol. 56, no. 4, pp. 267–275. https://doi.org/10.1134/S0010952518040068

    Article  Google Scholar 

  27. Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Earthquake Physics and Precursors), Moscow: Nauka, 2003.

  28. Song, D., **e, R., Zang, L., et al., A new algorithm for the characterization of thermal infrared anomalies in tectonic activities, Remote Sens., 2018, vol. 10, no. 12, p. 1941. https://doi.org/10.3390/rs10121941

    Article  Google Scholar 

  29. Tan, O. and Taymaz, T., Active tectonics of the Caucasus: Earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms, in Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia, Dilek, Y., and Pavlides, S., Eds., Geological Society of America, 2006, pp. 531–578. https://doi.org/10.1130/2006.2409(25)

  30. Tibaldi, A., Tsereteli, N., Varazanashvili, O., et al., Active stress field and fault kinematics of the Greater Caucasus, J. Asian Earth Sci., 2019, 104108. https://doi.org/10.1016/j.jseaes.2019.104108

  31. Tramutoli, V., Cuomo, V., Filizzola, C., Pergola, N., and Pietrapertosa, C., Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (Izmit) earthquake, August 17, 1999, Remote Sens. Environ., 2005, vol. 96, pp. 409–426.

    Article  Google Scholar 

  32. Tramutoli, V., Aliano, C., Corrado, R., Filizzola, C., Genzano, N., Lisi, M., Martinelli, G., and Pergola, N., On the possible origin of thermal infrared radiation (TIR) anomalies in earthquake-prone areas observed using robust satellite techniques (RST), Chem. Geol., 2013, vol. 339, pp. 157–168.

    Article  Google Scholar 

  33. Tronin, A.A., Satellite remote sensing in seismology: A review, Remote Sens., 2010, vol. 2, no. 1, pp. 124–150. https://doi.org/10.3390/rs2010124

    Article  Google Scholar 

  34. Tronin, A.A., Biagi, P.F., Molchanov, O.A., Khatkevich, Y.M., and Gordeev, E.I., Temperature variations related to earthquakes from simultaneous observation at the ground stations and by satellites in Kamchatka area, Phys. Chem. Earth, 2004, vol. 29, pp. 501–506. https://doi.org/10.1016/j.pce.2003.09.024

    Article  Google Scholar 

  35. Tronin, A.A. and Saraf, A.K., Satellite thermal survey of Himalayan frontal thrust, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2010, vol. 7, no. 2, pp. 350–353. https://doi.org/10.3390/rs2010124

    Article  Google Scholar 

  36. Tsereteli, N., Tibaldi, A., Alania, V., Gventsadse, A., Enukidze, O., Varazanashvili, O., and Muller, B.I.R., Active tectonics of central-western Caucasus, Georgia, Tectonophysics, 2016, vol. 691B, pp. 328–344. https://doi.org/10.1016/j.tecto.2016.10.025

    Article  Google Scholar 

  37. Ulomov, V.I., Danilova, T.I., Medvedeva, N.S., Polyakova, T.P., and Shumilina, L.S., Assessment of seismic hazard in the North Caucasus, Izv., Phys. Solid Earth, 2007, vol. 43, no. 7, pp. 559–572.

    Article  Google Scholar 

  38. Vilor, N.V. and Min’ko, N.P., Satellite monitoring of IR radiation of geological–structural elements of the Sayan–Baikal–Patomsk highlands and the Baikal rift zone, Issled. Zemli Kosmosa, 2002, no. 4, pp. 55–61.

  39. Yakovlev, F.L., Reconstruction of the balanced structure of the eastern part of alpine Greater Caucasus using data from quantitative analysis of linear folding: A case study, Vestn. Kamchatskoi Reg. Assots. Uchebno-Nauchnyi Tsentr, Nauki Zemle, 2012, vol. 19, no. 1, pp. 191–214.

    Google Scholar 

  40. Zhukov, B.S., Halle, W., Schlotzhauer, G., and Oertel, D., Spatial and temporal analysis of thermal anomalies as earthquake precursors, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2010, vol. 7, no. 2, pp. 333–343.

    Google Scholar 

Download references

Funding

The work was performed at the AEROCOSMOS Research Institute for Aerospace Monitoring within project no. 122011800095-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bondur.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondur, V.G., Voronova, O.S. Detection from Space of Anomalous Variations in Thermal Fields during Seismic Events in the Northern Caucasus in 2017–2022. Izv. Atmos. Ocean. Phys. 58, 1546–1556 (2022). https://doi.org/10.1134/S0001433822120064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822120064

Keywords:

Navigation