Log in

Studying Specific Features of the Propagation of Atmospheric Waves Generated by Tropospheric Sources and Variations in the Surface Pressure

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The generation and propagation of waves from model tropospheric meteorologic heat sources are theoretically studied. The processes of gas heating/cooling in water phase transitions at tropospheric altitudes are assumed to be the wave sources. In an analytical part of the study, equations are derived which describe the generation and propagation of acoustic and internal gravity waves separately. It is shown that powers of partial sources of acoustic and internal gravity waves always approximately coincide, regardless of wave frequencies, and the generation of internal gravity waves cannot occur without the generation of acoustic waves, and vice versa. Explicit analytical expressions are obtained for the generated waves. Due to resonant properties of the atmosphere, the high-frequency sources generate predominantly acoustic waves. The low-frequency sources generate mainly internal gravity waves if the sources work long enough for the resonance properties of atmosphere to be manifested. Using numerical experiments, the issue of error is investigated which is introduced if a tropospheric source is replaced with a surface one in which the pressure fluctuations on the surface are the recorded pressure fluctuations caused by the tropospheric source. It is shown that, if a tropospheric source operates at the infrasonic wave frequencies, then the wave patterns generated in the upper atmosphere from the tropospheric source and from the surface pressure fluctuations are almost identical. In the case of a tropospheric source operating at frequencies of internal gravity waves, the amplitude of waves from the surface pressure may be overestimated no more than twice. It is shown that, based on pressure fluctuations on the Earth’s surface, some corrected surface pressure source can be constructed which takes into account the phase shifts of interfering waves that propagate into the upper atmosphere. This provides a significant improvement in the simulation of waves from meteorological sources based on data on atmospheric pressure fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. C. Fritts, S. L. Vadas, K. Wan, and J. A. Werne, “Mean and variable forcing of the middle atmosphere by gravity waves,” J. Atmos. Sol.-Terr. Phys. 68, 247–265 (2006).

    Article  Google Scholar 

  2. R. Ploogonven and Ch. Snyder, “Inertial gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles,” J. Atmos. Sci. 64, 2502–2520 (2007).

    Article  Google Scholar 

  3. R. Plougonven and F. Zhang, “Internal gravity waves from atmospheric jets and fronts,” Rev. Geophys. 52, 1–37 (2014).

    Article  Google Scholar 

  4. M. A. Chernigovskaya, E. N. Sutyrina, and K. G. Ratovskii, “Meteorological effects of ionospheric disturbance over Irkutsk according to vertical radiosounding data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 11 (2), 264–274 (2014).

    Google Scholar 

  5. O. Borchevkina, I. Karpov, and M. Karpov, “Meteorological storm influence on the ionosphere parameters,” Atmosphere 11 (9), 1017 (2020). https://doi.org/10.3390/atmos11091017

    Article  Google Scholar 

  6. J. Boška, P. Šauli, J. German Solé, and L. F. Alberca, “Diurnal variation of the gravity wave activity at midlatitudes of the ionospheric F region,” Stud. Geophys. Geodaet. 47 (3), 579–586 (2003). https://doi.org/10.1023/A:1024763618505

    Article  Google Scholar 

  7. A. Ebel, “Contributions of gravity waves to the momentum, heat and turbulent energy budget of the upper mesosphere and lower thermosphere,” J. Atmos. Terr. Phys. 46, 727–737 (1984). https://doi.org/10.1016/0021-9169(84)90054-0

    Article  Google Scholar 

  8. M. J. Alexander and L. Pfister, “Gravity wave momentum flux in the lower stratosphere over convection,” Geophys. Res. Lett. 22 (15), 2029–2032 (1995).

    Article  Google Scholar 

  9. S. P. Kshevetskii and N. M. Gavrilov, “Vertical propagation, breaking, and effects of nonlinear gravity waves in the atmosphere,” J. Atmos. Sol.-Terr. Phys. 67, 10141030 (2005).

    Article  Google Scholar 

  10. I. Karpov and S. Kshevetskii, “Numerical study of heating the upper atmosphere by acoustic-gravity waves from a local source on the Earth’s surface and influence of this heating on the wave propagation conditions,” J. Atmos. Sol.-Terr. Phys. 164, 1016 (2017). https://doi.org/10.1016/j.jastp.2017.07.019

    Article  Google Scholar 

  11. J. B. Snively and V. B. Pasko, “Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes,” Geophys. Rev. Lett. 30 (24), 2254 (2003). https://doi.org/10.1029/2003GL018436

    Article  Google Scholar 

  12. M. Klimenko, F. S. Bessarab, T. V. Sukhodolov, et al., “Ionospheric effects of the sudden stratospheric warming in 2009: Results of simulation with the first version,” 12, 760–770 (2018). https://doi.org/10.1134/S1990793118040103

  13. G. I. Grigor’ev, “Acoustic-gravity waves in the earth’s atmosphere (review),” Radiophys. Quantum Electron. 42 (1), 1–21 (1999).

    Article  Google Scholar 

  14. A. V. Koval’ and N. M. Gavrilov, “Parametrization of the influence of orographic waves on the general circulation of the middle and upper atmosphere,” Uch. Zap. Ross. Gos. Gidrometeorol. Univ. 20, 71–75 (2011).

    Google Scholar 

  15. J. Artru, V. Ducic, H. Kanamori, et al., “Ionospheric detection of gravity waves induced by tsunamis,” Geophys. J. Int. 160, 840–848 (2005). https://doi.org/10.1134/10.1111/j.1365-246X.2005.02552.x

    Article  Google Scholar 

  16. A. Bourdillon, G. Occhipinti, J.-P. Molnié, and V. Rannou, “HF radar detection of infrasonic waves generated in the ionosphere by the 28 March 2005 Sumatra earthquake,” J. Atmos. Sol.-Terr. Phys. 109, 75–79 (2014). https://doi.org/10.1016/j.jastp.2014.01.008

    Article  Google Scholar 

  17. J. Chum, K. Skripnikova, and J. Base, “Atmospheric infrasound observed during intense convective storms on 9–10 July 2011,” J. Atmos. Sol. Terr. Phys. 122, 66–74 (2015). https://doi.org/10.1016/j.jastp.2014.10.014

    Article  Google Scholar 

  18. E. Blanc, T. Farges, A. Le Pichon, et al., “Ten year observations of gravity waves from thunderstorms in western Africa,” J. Geophys. Res.: Atmos. 119, 6409–6418 (2014).

    Article  Google Scholar 

  19. A. D. Pierce and S. C. Coroniti, “A mechanism for the generation of acoustic-gravity waves during thunder-storm formation,” Nature 210, 1209–1210 (1966).

    Article  Google Scholar 

  20. Y. Kurdyaeva, S. Kulichkov, S. Kshevetskii, et al., “Propagation to the upper atmosphere of acoustic-gravity waves from atmospheric fronts in the Moscow region,” Ann. Geophys. 37 (3), 447–454 (2019). https://doi.org/10.5194/angeo-37-447-2019

    Article  Google Scholar 

  21. Yu. A. Kurdyaeva, S. N. Kulichkov, S. P. Kshevetskii, et al., “Vertical propagation of acoustic-gravity waves from atmospheric fronts into the upper atmosphere,” Izv., Atmos. Ocean. Phys. 55 (4), 303–311 (2019). https://doi.org/10.1134/S0001433819040078

    Article  Google Scholar 

  22. S. Kshevetskii, Y. Kurdyaeva, S. Kulichkov, et al., “Simulation of propagation of acoustic-gravity waves generated by tropospheric front instabilities into the upper atmosphere,” Pure Appl. Geophys. 177, 5567–5584 (2020). https://doi.org/10.1007/s00024-020-02569-y

    Article  Google Scholar 

  23. Yu. A. Kurdyaeva, S. P. Kshevetskii, N. M. Gavrilov, et al., “Well-posedness of a problem of propagation of nonlinear acoustic-gravity waves in the atmosphere generated by surface pressure variations,” Num. Anal. Appl. 10 (4), 324–338 (2017).

    Article  Google Scholar 

  24. Y. A. Kurdyaeva, S. P. Kshevetskii, N. M. Gavrilov, et al., “Correct boundary conditions for the high-resolution model of nonlinear acoustic-gravity waves forced by atmospheric pressure variations,” Pure Appl. Geophys. 175, 3639–3652 (2018). https://doi.org/10.1007/s00024-018-1906-x

    Article  Google Scholar 

  25. Kh. P. Pogosyan, Cyclones (Gidrometeoizdat, Leningrad, 1976) [in Russian].

    Google Scholar 

  26. J. M. Wallace and P. V. Hobbs, Atmospheric Science: An Introductory Survey (Academic Press, New York, 2006).

    Google Scholar 

  27. S. P. Kshevetskii, “Modeling of propagation of internal gravity waves in gases,” Comput. Math. Math. Phys. 41 (2), 273–288 (2001).

    Google Scholar 

  28. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).

  29. AtmoSym Model of Atmospheric Processes, 2016. http://atmos.kantiana.ru. Accessed March 14, 2021.

  30. J. M. Picone, A. E. Hedin, D. P. Drob, et al., “NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific Issues,” J. Geophys. Res. 107 (A12), 1468 (2002). https://doi.org/10.1029/2002JA009430

    Article  Google Scholar 

  31. S. P. Kshevetskii, “On long acoustic-gravity waves in the atmosphere with arbitrary stratification by density,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 28 (5), 558–559 (1992).

    Google Scholar 

  32. Yu. V. Brezhnev, S. P. Kshevetskii, and S. B. Leble, “Liner initialization of hydrodynamical fields,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 30 (1), 86–90 (1994).

    Google Scholar 

  33. S. P. Kshevetskii, “Quasi-waveguide modes of internal gravity waves in the atmosphere,” Izv., Atmos. Ocean. Phys. 39 (2), 217–227 (2003).

    Google Scholar 

  34. Ya. Drobzheva and V. Krasnov, “The acoustic field in the atmosphere and ionosphere caused by a point explosion on the ground,” J. Atmos. Sol.-Terr. Phys. 65 (3), 369–377 (2003).

    Article  Google Scholar 

  35. D. V. Miller, “Thunderstorm induced gravity waves as a potential hazard to commercial aircraft,” in Proceedings of the 79th Annual Conference of the American Meteorological Society (American Meteorological Society, 1999).

  36. R. Fovell, D. Durran, and J. R. Holton, “Numerical simulation of convectively generated stratospheric gravity waves,” J. Atmos. Sci. 49 (16), 1427–1442 (1992).

    Article  Google Scholar 

  37. S. P. Kshevetskii and S. N. Kulichkov, “Effects that internal gravity waves from convective clouds have on atmospheric pressure and spatial temperature-disturbance distribution,” Izv., Atmos. Ocean. Phys. 51 (1), 42–48 (2015).

Download references

Funding

The work was supported by the Russian Science Foundation grant no. 21-17-00208 (Yu. A. Kurdyaeva: sections 2, 3, 4) and no. 21-17-00021 (S.N. Kulichkov section 1, 5). Sections 1-6 were completed by S. P. Kshevetskii.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kshevetskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kshevetskii, S.P., Kurdyaeva, Y.A. & Kulichkov, S.N. Studying Specific Features of the Propagation of Atmospheric Waves Generated by Tropospheric Sources and Variations in the Surface Pressure. Izv. Atmos. Ocean. Phys. 58, 30–43 (2022). https://doi.org/10.1134/S0001433822010066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822010066

Keywords:

Navigation