Log in

Synchronization of Activity–Rest Cycle Indicators in Mice with Geomagnetic Field Variations in the Millihertz Frequency Range

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The synchronization of mice motor activity, which reflects the activity–rest cycle, with variations in the X component of the geomagnetic field vector (BOXX) in the range of fluctuations from 10 to 120 min has been studied. The percentage of pixels on the video recording that changed their intensity within 10 s is used as an indicator of motor activity. The experiment was performed simultaneously on 16 males of the C57BL/6 line in October 2019 in Moscow. The mice were kept single in a plastic box (t = 22–26°С) under an artificial 12-h light regime and free access to water and food. The degree of similarity of the rhythm of biological and BOXX indicators is analyzed for each animal by evaluating the degree of similarity of their Fourier spectra for each 12-h day and night intervals. An analysis of the time series averaged over the group showed that almost all harmonics in the interval of 50–120 min correspond to equal harmonics of the BOXX. The cross-correlation function of two series has a statistically significant absolute maximum with a zero time lag between the series. On average, 18% of individual segments show statistically significant correlation between the spectra of activity–rest cycle and BOXX. This result indicates the adjustment of the biological rhythm for the variations of the geophysical one, which corresponds to the effect of adjusting the rhythms of heart and brain human activity to an external rhythm generator, the geomagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Alabdulgade, A., McCraty, R., Atkinson, M., Vainoras, A., Berškienė, K., Mauricienė, V., Navickas, Z., Šmidtaitė, R., Landauskas, M., and Daunoravičienė, A., Human heart rhythm sensitivity to earth local magnetic field fluctuations, J. Vibroeng., 2015, vol. 17, pp. 3271–3278.

    Google Scholar 

  2. Alabdulgade, A., McCraty, R., Atkinson, M., Dobyns, Y., Stolc, V., and Ragulskis, M., Long-term study of heart rate variability responses to changes in the solar and geomagnetic environment, Sci. Rep., 2018, vol. 8, no. 1, p. 2663. https://doi.org/10.1038/s41598-018-20932-x

  3. Blum, I.D., Zhu, L., Moquin, L., Kokoeva, M.V., Gratton, A., Giros, B., and Storch, K.F., A highly tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal, Elife, 2014, vol. 3, p. e05105. https://doi.org/10.7554/eLife.05105

  4. Bourguignon, C. and Storch, K.F., Control of rest: Activity by a dopaminergic ultradian oscillator and the circadian clock, Front Neurol., 2017, vol. 8, p. 614. https://doi.org/10.3389/fneur.2017.00614

  5. Breus, T.K., Halberg, F., and Cornélissen, G., Effect of solar activity on the physiological rhythms of biological systems, Biofizika, 1995, vol. 40, no. 4, pp. 737–747.

    Google Scholar 

  6. Breus, T.K., Binhi, V.N., and Petrukovich, A.A., Magnetic factor of the solar terrestrial relations and its impact on the human body: physical problems and prospects for research, Phys.-Usp., 2016, vol. 59, no. 5, pp. 502–510.

    Article  Google Scholar 

  7. Chizhevsky, A.L., Zemnoe ekho solnechnykh bur' (The Terrestrial Echo of Solar Storms), Moscow: Mysl’, 1976.

  8. Cornélissen, G., Halberg, F., Breus, T.K., Watanabe, Y., Sothern, R., Haus, E., Kleitman, E., Wendt, H.W., and Bingham, C., The possible origin of the biological week inferred from the human heart rate variations over the solar activity cycle, Biophysics, 1998, vol. 43, no. 4, pp. 628–631.

    Google Scholar 

  9. Cornélissen, G., Halberg, F., Breus, T.K., Syutkina, E.V., Baevsky, R.M., Weydahl, A., Watanabe, Y., Otsuka, K., Siegelova, J., Fiser, B., and Bakken, E.E., Non-photic solar associations of heart rate variability and myocardial infarction, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, pp. 707–728.

    Article  Google Scholar 

  10. Davis, G.E. and Lowell, W.E., Solar cycles and their relationship to human disease and adaptability, Med. Hypotheses, 2006, vol. 67, pp. 447–461. https://doi.org/10.1016/j.mehy.2006.03.011

    Article  Google Scholar 

  11. Diatroptov, M.E., Diatroptova, M.A., Aleksankina, V.V., and Kosyreva, A.M., Intraday biorhythms of body temperature dynamics in c57bl/6 mice under constant illumination and natural photoperiod, Byull. Eksp. Biol. Med., 2020a, vol. 169, no. 3, pp. 361–365.

    Article  Google Scholar 

  12. Diatroptov, M.E., Rutovskaya, M.V., and Surov, A.V., The phenomenon of synchronous food intake in starlings (Sturnus vulgaris) under the conditions of isolation from each other, Dokl. Biol. Sci., 2020b, vol. 492, no. 1, pp. 99–102.

    Article  Google Scholar 

  13. Dorokhov, V.B., Taranov, A.O., Sakharov, D.S., Gruzdeva, S.S., Tkachenko, O.N., Arseniev, G.N., Ligun, N.V., Sveshnikov, D.S., Bakaeva, Z.B., Dementienko, V.V., and Puchkova, A.N., Effects of exposures to weak 2 Hz vs. 8 Hz electromagnetic fields on spectral characteristics of the electroencephalogram in afternoon nap, Biol. Rhythm Res., 2020. https://doi.org/10.1080/09291016.2020.1857936

  14. Dzalilova, D.S., Diatroptova, M.A., Mkhitarov, V.A., and Diatroptov, M.E., Infradian rhythms of resistance to a dissociative anesthetic in wistar male rats under normal conditions and after surgical removal of the adrenal glands and testes, Bull. Exp. Biol. Med., 2019, vol. 166, no. 3, pp. 413–416.

  15. Gumarova, L., Cornélissen, G., Hillman, D., and Halberg, F., Geographically selective assortment of cycles in pandemics: Meta-analysis of data collected by Chizhevsky, Epidemiol. Infect., 2013, vol. 141, no. 10, pp. 2173–2184. https://doi.org/10.1017/S0950268812002804

    Article  Google Scholar 

  16. Halberg, F., Breus, T.K., Cornélissen, G., Bingham, C., Hillman, D.C., Rigatuso, J., Delmore, P., and Bakken, E., International womb-to-tomb chronome initiative group, in Chronobiology in Space: Keynote of 37th Annual Meeting of Japan Society for Aerospace and Environmental Medicine, Nagoya, Japan, November 8–9, 1991, Minneapolis: Univ. of Minnesota, 1991.

  17. Halberg, F., Cornélissen, G., Otsuka, K., Watanabe, Y., et al., Cross-spectrally coherent ~ 10.5- and 21-year biological and physical cycles, magnetic storms and myocardial infarctions, Neuroendocrinol. Lett., 2000, vol. 21, no. 3, pp. 233–258.

    Google Scholar 

  18. Hayes, D.P., Influenza pandemics, solar activity cycles, and vitamin D, Med. Hypotheses, 2010, vol. 74, no. 5, pp. 831–834. https://doi.org/10.1016/j.mehy.2009.12.002

    Article  Google Scholar 

  19. Kaznacheev, V.P. and Mikhailova, L.P., Sverkhslabye izlucheniya v mezhkletochnykh vzaimodeistviyakh (Ultraweak Radiation in Intercellular Interactions), Novosibirsk: Nauka, 1981.

  20. Komarov, F.I., Breus, T.K., Rapoport, S.I., Oraevskii, V.N., Gurfinkel’, Yu.I., Halberg, F., and Cornélissen, G., Medical and biological effects of solar activity, Vestn. Akad. Med. Nauk, 1994, no. 11, pp. 37–50.

  21. Kuznetsov, A.E., Synchronization of the biosynthetic activity of microbial producers of rhythms of cosmophysical original, Biofizika, 1992, vol. 37, no. 4, pp. 772–784.

    Google Scholar 

  22. Manolov, A.I., Dolgikh, V.V., Ukraintseva, Yu.V., Zavalko, I.M., Revishchin, A.V., Pavlova, G.V., Pronina, T.S., Ugryumov, M.V., Dorokhov, V.B., and Koval’zon, V.M., Changes in motor activity and the sleep-waking cycle in an MPTP model of Parkinson’s disease in mice, Neurosci. Behav. Physiol., 2016, vol. 46, no. 4, pp. 467–471.

    Article  Google Scholar 

  23. McCraty, R., Atkinson, M., Stolc, V., Alabdulgader, A.A., Vainoras, A., and Ragulskis, M., Synchronization of human autonomic nervous system rhythms with geomagnetic activity in human subjects, Int. J. Environ. Res. Public Health, 2017, vol. 14, no. 7, p. 770. https://doi.org/10.3390/ijerph14070770

  24. Ohayon, M.M., Stolc, V., Freund, F.T., Milesi, C., and Sullivan, S.S., The potential for impact of man-made super low and extremely low frequency electromagnetic fields on sleep, Sleep. Med. Rev., 2019, vol. 47, pp. 28–38. https://doi.org/10.1016/j.smrv.2019.06.001

    Article  Google Scholar 

  25. Pobachenko, S.V., Kolesnik, A.G., Borodin, A.S., and Kalyuzhin, V.V., The contingency of parameters of human encephalograms and Schumann resonance electromagnetic fields revealed in monitoring studies, Biophysics, 2006, vol. 51, no. 3, pp. 480–483. https://doi.org/10.1134/S0006350906030225

    Article  Google Scholar 

  26. Poskotinova, L.V., Zenchenko, T.A., Krivonogova, E.V., and Demin, D.B. Methodological aspects of the monitoring of individual reactions of the brain bioelectrical activity under variations in the geomagnetic field in the Arctic, Vestn. Ural. Med. Akad. Nauk, 2018, vol. 15, no. 2, pp. 316–323. https://doi.org/10.22138/2500-0918-2018-15-2-316-323

    Article  Google Scholar 

  27. Qu, J., Is sunspot activity a factor in influenza pandemics?, Rev. Med. Virol., 2016, vol. 26, no. 5, pp. 309–313. https://doi.org/10.1002/rmv.1887

    Article  Google Scholar 

  28. Saroka, K.S., Vares, D.E., and Persinger, M.A., Similar spectral power densities within the Schumann resonance and a large population of quantitative electroencephalographic profiles: Supportive evidence for Koenig and Pobachenko, PLoS One, 2016, vol. 11, p. e0146595. https://doi.org/10.1371/journal.pone.0146595

    Article  Google Scholar 

  29. Schweiger, H.-G., Berger, S., Kretschmer, H., Morler, H., Halberg, E., Sothern, R.B., and Halberg, F., Evidence of a circaseptan and circasemiseptan growth response to light/darkness cycle shifts in nucleated and enucleated Acetabularia cells respectively, Proc. Natl. Acad. Sci. U.S.A., 1986, no. 83, pp. 8619–8623.

  30. Temur’yants, N.A., Vladimirskii, B.M., and Tishkin, O.G., Sverkhnizkochastotnye elektromagnitnye signaly v biologicheskom mire (ELF Electromagnetic Signals in the Biological World), Kiev: Naukova Dumka, 1992.

  31. Timofejeva, I., McCraty, R., Atkinson, M., Joffe, R., Vainoras, A., Alabdulgader, A., and Ragulskis, M., Identification of a group’s physiological synchronization with Earth’s magnetic field, Int. J. Environ. Res. Public Health, 2017, vol. 14, no. 9, p. 998. https://www.ncbi. nlm.nih.gov/pmc/articles/PMC5615535/.

  32. Vieira, C.L.Z., Janot-Pacheco, E., Lage, C., Pacini, A., Koutrakis, P., Cury, P.R., and Shaodan, H., Pereira, L.A., and Saldiva, P.H.N., Long-term association between the intensity of cosmic rays and mortality rates in the city of Sao Paulo, Environ. Res. Lett., 2018, vol. 13, p. 024009. https://doi.org/10.1088/1748-9326/aaa27a

    Article  Google Scholar 

  33. Vladimirskii, B.M. and Temuryants, N.A., Vliyanie solnechnoi aktivnosti na biosferu–noosferu (Solar Activity Effect on the Biosphere–Noosphere), Moscow: MNEPU, 2000.

  34. Wickramasinghe, N.C., Is the 2019 novel coronavirus related to a spike of cosmic rays?, Adv. Genet., 2020, vol. 106, pp. 119–122. https://doi.org/10.1016/bs.adgen.2020.06.003

    Article  Google Scholar 

  35. Zenchenko, T.A. and Breus, T.K., The possible effect of space weather factors on various physiological systems of the human organism, Atmosphere, 2021, vol. 12, p. 346. https://doi.org/10.3390/atmos12030346

  36. Zenchenko, T.A., Medvedeva, A.A., Khorseva, N.I., and Breus, T.K., Synchronization of human heart-rate indicators and geomagnetic field variations in the frequency range of 0.5–3.0 mHz, Izv., Atmos. Ocean. Phys., 2014a, vol. 50, no. 7, pp. 736–744.

    Article  Google Scholar 

  37. Zenchenko, T.A., Jordanova, M., Poskotinova, L.V., Medvedeva, A.A., Alenikova, A.E., Khorseva, N.I., Synchronization between human heart rate dynamics and Pc5 geomagnetic pulsations at different latitudes, Biophysics, 2014b, vol. 59, no. 6, pp. 965–972.

    Article  Google Scholar 

  38. Zenchenko, T.A., Medvedeva, A.A., Potolitsina, N.N., Parshukova, O.I., and Boiko, E.R., Correlation of the dynamics of minute-scale heart rate oscillations and biochemical parameters of the blood in healthy subjects to Pc5–6 geomagnetic pulsations, Biophysics, 2015, vol. 60, no. 2, pp. 309–316.

    Article  Google Scholar 

  39. Zhang, Z., Wang, H.J., Wang, D.R., Qu, W.M., and Huang, Z.L., Red light at intensities above 10 Lx alters sleep-wake behavior in mice, Light Sci. Appl., 2017, vol. 6, p. e16231. https://doi.org/10.1038/lsa.2016.231

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The results presented in this article are based on data collected from magnetic observatories. We thank the national institutions supporting the observatories and the leadership of the INTERMAGNET international network for promoting the high standards of practice in magnetic observatories (www.intermagnet.org).

Funding

This study was supported by the state budget and partly with financial support from the Russian Foundation for Basic Research, project no. 20-013-00603a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. B. Dorokhov, G. N. Arseniev, D. S. Sakharov, O. N. Tkachenko, M. E. Diatroptov or T. A. Zenchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorokhov, V.B., Arseniev, G.N., Sakharov, D.S. et al. Synchronization of Activity–Rest Cycle Indicators in Mice with Geomagnetic Field Variations in the Millihertz Frequency Range. Izv. Atmos. Ocean. Phys. 57, 1308–1321 (2021). https://doi.org/10.1134/S0001433821100029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821100029

Keywords:

Navigation