Log in

First Satellite Measurements of Carbon Dioxide in the Earth’s Atmosphere (From the SI-1 Spectrometer Aboard the Meteor Satellite in 1979)

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Spectral measurements of the outgoing thermal IR radiation carried out in 1977 and 1979 (SI-1 instrument, Meteor satellite) are used for estimating the CO2 content in the Earth’s atmosphere. A special algorithm based on the technique of artificial neural networks has been developed for solving the inverse problem of determining the CO2 content. The algorithm uses experimental spectra, as well as data on temperature and humidity from the NCEP CFSR reanalysis archive. Despite the presence of a noticeable variation in individual values of CO2 content in 1977 and 1979 (330–350 ppm), the estimates clearly demonstrate the seasonal variations of the carbon dioxide content for Europe and low values for the Southern Hemisphere. The spatial and temporal averaging of the retrieved CO2 estimates gives mean winter and spring–summer values for the European region at 338.2 and 336.5 ± 3.1 ppmv, correspondingly, which is in a good agreement with the ground-based measurements at Mauna Loa station.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by R. K. Pachauri and L. A. Meyer (IPCC, Geneva, 2014).

    Google Scholar 

  2. A. Chédin, A. Hollingsworth, N. A. Scott, S. Serrar, C. Crevoisier, and R. Armante, “Annual and seasonal variations of atmospheric CO2, N2O and CO concentration retrieved from NOAA/TOVS satellite observations,” Geophys. Res. Lett. 29 (8), 110–114 (2002).

    Article  Google Scholar 

  3. H. Kobayashi, A. Shimota, C. Yoshigahara, I. Yoshida, Y. Uehara, and K. Kondo, “Satellite-borne high-resolution FTIR for lower atmosphere sounding and its evaluation,” IEEE Trans. Geosci. Remote Sens. 37 (3), 1496–1507 (1999).

    Article  Google Scholar 

  4. O. Schneising, M. Buchwitz, J. P. Burrows, H. Bovensmann, M. Reuter, J. Notholt, R. Macatangay, and T. Warneke, “Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 1: Carbon dioxide,” Atmos. Chem. Phys. 8, 3827–3853 (2008).

    Article  Google Scholar 

  5. E. T. Olsen, AIRS Version 5 Release Tropospheric CO2 Products. https://docserver.gesdisc.eosdis.nasa.gov/ repository/Mission/AIRS/3.3_ScienceData Product Documentation/3.3.4_Product Generation Algorithms/ AIRS-V5-Tropospheric-CO2-Products.pdf.

  6. S. S. Kulawik, D. B. A. Jones, R. Nassar, et al., “Characterization of tropospheric emission spectrometer (TES) CO2 for carbon cycle science,” Atmos. Chem. Phys. 10, 5601–5623 (2010).

    Article  Google Scholar 

  7. O. E. García, E. Sepúlveda, M. Schneider, et al., “Consistency and quality assessment of the Metop-A/IASI and Metop-B/IASI operational trace gas products (O3, CO, N2O, CH4, and CO2) in the subtropical North Atlantic,” Atmos. Meas. Tech. 9, 2315–2333 (2016).

    Article  Google Scholar 

  8. A. J. Cogan, H. Boesch, R. J. Parker, et al., “Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations,” J. Geophys. Res. 117, D21301 (2012).

    Article  Google Scholar 

  9. D. Crisp, H. R. Pollock, R. Rosenberg, et al., “The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products,” Atmos. Meas. Tech. 10, 59–81 (2017).

    Article  Google Scholar 

  10. V. Kempe, D. Oertel, R. Schuster, et al., “Absolute IR spectra from the measurement of Fourier-spectrometers aboard Meteor 25 and 28,” Acta Astronaut. 7 (12), 1403–1416 (1980).

    Article  Google Scholar 

  11. A. V. Polyakov, Yu. M. Timofeev, and Ya. A. Virolainen, “Using artificial neural networks in the temperature and humidity sounding of the atmosphere,” Izv., Atmos. Oceanic Phys. 50 (3), 330–336 (2014).

    Article  Google Scholar 

  12. Yu. M. Timofeyev, A. B. Uspensky, F. S. Zavelevich, A. V. Polyakov, Y. A. Virolainen, A. N. Rublev, A. V. Kukharsky, J. V. Kiseleva, D. A. Kozlov, I. A. Kozlov, A. G. Nikulin, V. P. Pyatkin, and E. V. Rusin, “Hyperspectral infrared atmospheric sounder IKFS-2 on “Meteor-M” No. 2 – Four years in orbit,” J. Quant. Spectrosc. Radiat. Transfer 238, 106579 (2019). https://doi.org/10.1016/j.jqsrt.2019.106579

    Article  Google Scholar 

  13. RTTOV-12 Science and Validation Report. www. nwpsaf.eu/site/download/documentation/rtm/docs_ rttov12/rttov12_svr.pdf

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 17-05-00768.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Timofeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, Y.M., Polyakov, A.V., Virolainen, Y.A. et al. First Satellite Measurements of Carbon Dioxide in the Earth’s Atmosphere (From the SI-1 Spectrometer Aboard the Meteor Satellite in 1979). Izv. Atmos. Ocean. Phys. 56, 401–404 (2020). https://doi.org/10.1134/S000143382004009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382004009X

Keywords:

Navigation