Log in

Organized Roll Circulation and Transport of Mineral Aerosols in the Atmospheric Boundary Layer

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract—

An investigation into mesoscale roll circulation and its transport characteristics in the atmospheric boundary layer (ABL) is carried out. The case study of July 28, 2007, in Kalmykia, monitored during an expedition from the Obukhov Institute of Atmospheric Physics, is considered using the WRF-ARW model. The development of circulation with considerable asymmetry in the positive and negative components of the velocity field and helicity is recorded. The quasi-2D roll structures are characterized by an intensification of the dust capture and accumulation from the underlying terrain and, along with intensive vortices with a vertical axis, are a significant source of atmospheric impurities. Captured finely dispersed aerosols can be transported at long distances and form aerosol layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. J. Wurman and J. Winslow, “Intense sub-kilometer-scale boundary layer rolls observed in Hurricane Fran,” Science 280 (5363), 555–557 (1998).

    Article  Google Scholar 

  2. S. H. Chou and M. P. Ferguson, “Heat fluxes and roll circulations over the western Gulf Stream during an intense cold-air outbreak,” Boundary Layer Meteorol. 55 (3), 255–281 (1991).

    Article  Google Scholar 

  3. A. E. Ordanovich and Yu. V. Pashkovskaya, “Effect of thermal stratification on Ekman flow stability,” Fluid Dyn. 33 (3), 355–359 (1998).

    Article  Google Scholar 

  4. R. E. Kaylor and A. Faller, “Instability of the Stratified Ekman Boundary Layer and the Generation of Internal Waves,” J. Atmos. Sci. 29 (3), 497–509 (1972).

    Article  Google Scholar 

  5. I. G. Granberg, V. F. Kramar, R. D. Kuznetsov, O. G. Chkhetiani, M. A. Kallistratova, S. N. Kulichkov, M. S. Artamonova, D. D. Kuznetsov, V. G. Perepelkin, V. V. Perepelkin, and F. A. Pogarskii, “A study of the spatial structure of the atmospheric boundary layer with a Doppler-Sodar network,” Izv., Atmos. Ocean. Phys. 45 (5), 541–548 (2009).

    Article  Google Scholar 

  6. D. Etling and R. A. Brown, “Roll vortices in the planetary boundary layer. A review,” Boundary-Layer Meteorol. 65 (3), 215–248 (1993).

    Article  Google Scholar 

  7. R. A. Brown, “Longitudinal instabilities and secondary flows in the planetary boundary layer,” Rev. Geophys. Space Phys. 18 (3), 683–697 (1980).

    Article  Google Scholar 

  8. R. Foster, “Signature of large aspect ratio roll vortices in synthetic aperture radar images of tropical cyclones,” Oceanography 26 (2), 58–67 (2013).

    Article  Google Scholar 

  9. S. H. Chou and D. Atlas, “Satellite estimates of ocean–air heat fluxes during cold air outbreaks,” Mon. Weather Rev. 110 (10), 1434–1450 (1982).

    Article  Google Scholar 

  10. P. F. Hein and R. A. Brown, “Observations of longitudinal roll vortices during arctic cold air outbreaks over open water,” Boundary-Layer Meteorol. 45 (1–2), 177–199 (1988).

    Article  Google Scholar 

  11. B. Brümmer, “Roll and cell convection in wintertime Arctic cold-air outbreaks,” J. Atmos. Sci. 56 (15), 2613–2636 (1999).

    Article  Google Scholar 

  12. R. C. Foster, “Structure and energetics of optimal Ekman layer perturbations,” J. Fluid Mech. 333, 97–123 (1997).

    Article  Google Scholar 

  13. H. Morrison, J. A. Curry, and V. I. Khvorostyanov, “A new double-moment microphysics parameterization for application in cloud and climate models. Part I: description,” J. Atmos. Sci. 62 (6), 1665–1677 (2005).

    Article  Google Scholar 

  14. R. C. Foster, “Why rolls are prevalent in the hurricane boundary layer,” J. Atmos. Sci. 62 (8), 2647–2661 (2005).

    Article  Google Scholar 

  15. I. Ginis, A. P. Khain, and E. Morozovsky, “Effects of large eddies on the structure of the marine boundary layer under strong wind conditions,” J. Atmos. Sci. 72 (9), 3049–3063 (2004).

    Article  Google Scholar 

  16. K. Gao and I. Ginis, “On the equilibrium-state roll vortices and their effects in the hurricane boundary layer,” J. Atmos. Sci. 73 (3), 1205–1222 (2016).

    Article  Google Scholar 

  17. J. Ito, T. Oizumi, and H. Niino, “Near-surface coherent structures explored by large eddy simulation of entire tropical cyclones,” Sci. Rep. 7 (1), 3798 (2017).

    Article  Google Scholar 

  18. K. A. Gavrilov, D. Morvan, G. Accary, D. V. Lyubimov, S. Meradji, and O. A. Bessonov, “Numerical modeling of coherent structures attendant on impurity propagation in the atmospheric boundary layer over a forest canopy,” Vychisl. Mekh. Sploshnykh Sred 3 (2), 34–45 (2010).

    Google Scholar 

  19. D. K. Lilly, “On the stability of Ekman boundary flow,” J. Atmos. Sci. 23 (5), 481–494 (1966).

    Article  Google Scholar 

  20. R. C. Foster, PhD Thesis (University of Washington, Seattle, 1996).

  21. R. A. Brown, “A secondary flow model for the planetary boundary layer,” J. Atmos. Sci. 27 (5), 742–757 (1970).

    Article  Google Scholar 

  22. L. A. Mikhailova and A. E. Ordanovich, “Simulation of two-dimensional ordered vortices in the atmospheric boundary layer,” Meteorol. Gidrol., No. 11, pp. 29–42.

  23. D. J. Stensrud and H. N. Shirer, “Development of boundary layer rolls from dynamic instabilities,” J. Atmos. Sci. 45 (6), 1007–1019 (1988).

    Article  Google Scholar 

  24. T. Dubos, C. Barthlott, and P. Drobinski, “Emergence and secondary instability of Ekman layer rolls,” J. Atmos. Sci. 65 (7), 2326–2342 (2008).

    Article  Google Scholar 

  25. N. V. Vazaeva, O. G. Chkhetiani, L. V. Shestakova, and L. O. Maksimenkov, “Nonlinear evolution of structures in the Ekman layer,” Vychisl. Mekh. Sploshnykh Sred 10 (2), 197–211 (2017).

    Google Scholar 

  26. G. N. Coleman, J. H. Ferziger, and P. R. Spalart, “A numerical study of the turbulent Ekman layer,” J. Fluid Mech. 213, 313–348 (1990).

    Article  Google Scholar 

  27. G. N. Coleman, J. H. Ferziger, and P. R. Spalart, “A numerical study of the convective boundary layer,” Boundary-Layer Meteorol. 70 (3), 247–272 (1994).

    Article  Google Scholar 

  28. J. W. Deardorff, “Numerical investigation of neutral and unstable planetary boundary layers,” J. Atmos. Sci. 29 (1), 91–115 (1972).

    Article  Google Scholar 

  29. P. Mason and D. Thomson, “Large-eddy simulations of the neutral-static-stability planetary boundary layer,” Q. J. R. Meteorol. Soc. 113, 413–443 (1987).

    Article  Google Scholar 

  30. S. T. Salesky, M. Chamecki, and E. Bou-Zeid, “On the nature of the transition between roll and cellular organization in the convective boundary layer,” Boundary Layer Meteorol. 163 (1), 41–68 (2017).

    Article  Google Scholar 

  31. C. H. Moeng, J. Dudhia, J. Klemp, and P. Sullivan, “Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model,” Mon. Weather Rev. 135 (6), 2295–2311 (2007).

    Article  Google Scholar 

  32. J. Ito, H. Niino, and M. Nakanishi, “Large eddy simulation on dust suspension in a convective mixed layer,” Sci. Online Lett. Atmos. 6 (1), 133–136 (2010).

    Google Scholar 

  33. J. Ching, R. Rotunno, M. LeMone, A. Martilli, B. Kosovic, P. A. Jimenez, and J. Dudhia, “Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models,” Mon. Weather Rev. 142 (9), 3284–3302 (2014).

    Article  Google Scholar 

  34. Y. Zhang, R. Hu, and X. Zheng, “Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study,” Phys. Fluids 30 (4), 046601 (2018).

    Article  Google Scholar 

  35. C.-L. Lin, J. McWilliams, C. -H. Moeng, and P. Sullivan, “Coherent structures and dynamics in a neutrally stratified planetary boundary layer flow,” Phys. Fluids 8, 2626–2639 (1996).

    Article  Google Scholar 

  36. P. Drobinski, P. Carlotti, J.-L. Redelsperger, R. Banta, V. Masson, and R. Newsom, “Numerical and experimental investigation of the neutral atmospheric surface layer,” J. Atmos. Sci. 64 (1), 137–156 (2007).

    Article  Google Scholar 

  37. K. Hibino, H. Ishikawa, and K. Ishioka, “Effect of a cap** inversion on the stability of an Ekman boundary layer,” J. Meteorol. Soc. Jpn. Ser. II 90 (2), 311–319 (2012).

    Article  Google Scholar 

  38. D. Etling, “Some aspect of helicity in atmospheric flows,” Beitr. Phys. Atmos. 58 (1), 88–100 (1985).

    Google Scholar 

  39. M. V. Kurganskii, “On the relation between helicity and potential vorticity in a compressible rotating fluid,” Izv. Akad. Nauk: Fiz. Atmos. Okeana 25 (12), 1326–1329 (1989).

    Google Scholar 

  40. R. Hide, “Superhelicity, helicity and potential vorticity,” Geophys. Astrophys. Fluid Dyn. 48 (1–3), 69–79 (1989).

    Article  Google Scholar 

  41. O. G. Chkhetiani, “On the helical structure of the Ekman boundary layer,” Izv., Atmos. Ocean. Phys. 37 (5), 569–575 (2001).

    Google Scholar 

  42. B. M. Koprov, V. M. Koprov, V. M. Ponomarev, and O. G. Chkhetiani, “Experimental studies of turbulent helicity and its spectrum in the atmospheric boundary layer,” Dokl. Phys. 50 (8), 419–422 (2005).

    Article  Google Scholar 

  43. N. V. Vazaeva, O. G. Chkhetiani, R. D. Kuznetsov, M. A. Kallistratova, V. F. Kramar, V. S. Lyulyukin, and D. D. Kuznetsov, “Estimating helicity in the atmospheric boundary layer from acoustic sounding data,” Izv., Atmos. Ocean. Phys. 53 (2), 174–186 (2017).

    Article  Google Scholar 

  44. E. Deusebio and E. Lindborg, “Helicity in the Ekman Boundary Layer,” J. Fluid Mech. 755, 654–671 (2014).

    Article  Google Scholar 

  45. O. G. Chkhetiani, M. V. Kurgansky, and N. V. Vazaeva, “Turbulent helicity in the atmospheric boundary layer,” Boundary Layer Meteorol. 168 P, 361–385 (2018).

  46. V. M. Ponomarev, “Micro-scale modelling of pollution dispersion in atmospheric boundary layer,” Syst. Anal. Model. Simul. 30, 39–44 (1998).

    Google Scholar 

  47. G. I. Gorchakov, B. M. Koprov, and K. A. Shukurov, “Arid aerosol transport by vortices,” Izv., Atmos. Ocean. Phys, 39 (5), 596–608 (2003).

    Google Scholar 

  48. R. V. Cakmur, R. L. Miller, and O. Torres, “Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model,” J. Geophys. Res. 109 (D7) (2004).

  49. T. Takemi, M. Yasui, J. Zhou, and L. Liu, “Role of boundary layer and cumulus convection on dust emission and transport over a midlatitude desert area,” J. Geophys. Res. 111 (D11), D11203 (2006).

    Article  Google Scholar 

  50. J. H. Marsham, D. J. Parker, C. M. Grams, B. T. Johnson, W. M. F. Grey, and A. N. Ross, “Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara,” Atmos. Chem. Phys. 8, 6979–6993 (2008).

    Article  Google Scholar 

  51. M. Klose and Y. Shao, “Stochastic parameterization of dust emission and application to convective atmospheric conditions,” Atmos. Chem. Phys. Discuss. 12, 3263–3293 (2012).

    Article  Google Scholar 

  52. R. A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941).

    Google Scholar 

  53. Y. Shao, Physics and Modelling of Wind Erosion (Kluwer, Boston, 2000).

    Google Scholar 

  54. N. E. Zhukovskii, “On snow drifts and river silting,” in Collection of Works in 7 Volumes (GTTI, Moscow–Leningrad, 1949), vol. 3, pp. 451–477 [in Russian].

    Google Scholar 

  55. M. R. Maxey, “On the advection of spherical and non-spherical particles in a non-uniform flow,” Phil. Trans. R. Soc. London A 333 (1631), 289–307 (1990).

    Article  Google Scholar 

  56. L. A. Ostrovskii, “Dynamics of the concentration of light and heavy particles in fluid flows,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana 26 (12), 1307–1314 (1992).

    Google Scholar 

  57. N. Raju and E. Meiburg, “Dynamics of small, spherical particles in vortical and stagnation point flow fields,” Phys. Fluids 9 (2), 299–314 (1997).

    Article  Google Scholar 

  58. C. Narayanan, D. Lakehal, L. Botto, and A. Soldati, “Mechanisms of particle deposition in a fully developed turbulent open channel flow,” Phys. Fluids 15 (3), 763–775 (2003).

    Article  Google Scholar 

  59. I. Mezić, A. Leonard, and S. Wiggins, “Regular and chaotic particle motion near a helical vortex filament,” Phys. D (Amsterdam) 111 (1–4), 179–201 (1998).

    Article  Google Scholar 

  60. A. E. Aloyan, Modeling the Dynamics and Kinetics of Gaseous Admixtures and Aerosols in the Atmosphere (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  61. S. V. Lutsenko, V. I. Lebedev, and V. N. Lykosov, “Modeling the soil aerosol transport processes in the convective boundary layer of the atmosphere,” in Proceedings of the Int. Conf. “Physics of Atmospheric Aerosol” Commemorating G. V. Rozenberg’s 85th Anniversary (Moscow, 1999), p. 216.

  62. T. Ju, X. Li, H. Zhang, X. Cai, and Y. Song, Comparison of two different dust emission mechanisms over the Horqin Sandy Land area: Aerosols contribution and size distributions, Atmos. Environ. 176, 82–90 (2018).

    Article  Google Scholar 

  63. IPCC IV: Climate Change 2007: The Physical Science Basis (Cambridge Univ. Press, New York, 2007).

  64. K. Ya. Kondrat’ev and L. S. Ivlev, Aerosol Climatology and Cloudiness (VVM, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  65. P. Knippertz and J.-B. W. Stuut, Mineral Dust: A Key Player in the Earth System (Springer, Dordrecht, 2014).

    Book  Google Scholar 

  66. W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, A Description of the Advanced Research WRF Version 3, NCAR Tech. Note NCAR/TN-475+STR, 2008.

  67. N. F. Vel’tishchev and V. D. Zhupanov, “Numerical weather forecast by WRF-ARW and WRF-NMM nonhydrostatic community models,” in 80 Years of the Russian Hydrometeorological Center, Collection of Papers (Triada, Moscow, 2010), pp. 94–135 [in Russian].

    Google Scholar 

  68. C. Talbot, E. Bou-Zeid, and J. Smith, “Nested mesoscale large-eddy simulations with WRF: Performance in real test cases,” J. Hydrometeorol. 13 (5), 1421–1441 (2012).

    Article  Google Scholar 

  69. G. A. Grell, S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, B. Eder, “Fully coupled “online” chemistry within the WRF model,” Atmos. Environ. 39 (37), 6957–6975 (2005).

    Article  Google Scholar 

  70. Y. Shao, “A Model for Mineral Dust Emission,” Journal of Geophysical Research: Atmospheres 106 (D17), 20239–20254 (2001).

    Article  Google Scholar 

  71. Y. Shao, “Simplification of a dust emission scheme and comparison with data,” J. Geophys. Res.: Atmos. 109 (D10), D10202 (2004).

    Article  Google Scholar 

  72. Y. Shao, M. Ishizuka, M. Mikami, and J. Leys, “Parameterization of size-resolved dust emission and validation with measurements,” J. Geophys. Res.: Atmos. 116 (D8), D08203 (2011).

    Google Scholar 

  73. L. Wei and Q. Chen, “Calculation of drag force on an object settling in gas-solid fluidized beds,” Part. Sci. Technol. 19 (3), 229–238 (2001).

    Article  Google Scholar 

  74. G. S. Golitsyn, I. G. Granberg, A. V. Andronova, V. M. Ponomarev, S. S. Zilitinkevich, V. V. Smirnov, and M. Y. Yablokov, “Investigation of boundary layer fine structure in arid regions: Injection of fine dust into the atmosphere,” Water, Air, Soil Pollut.: Focus 3 (2), 245–257 (2003).

    Article  Google Scholar 

  75. E. B. Gledzer, I. G. Granberg, and O. G. Chkhetiani, “Air dynamics near the soil surface and convective emission of aerosol,” Izv., Atmos. Ocean. Phys. 46 (1), 29–40 (2010).

    Article  Google Scholar 

  76. N. V. Vazaeva, O. G. Chkhetiani, E. B. Gledzer, M. S. Artamonova, M. A. Iordanskii, M. V. Kurgansky, V. A. Lebedev, L. O. Maximenkov, and Y. I. Obvintsev, “Aerosol emission in the arid zones of Southern Russia,” in Report Series In Aerosol Science 201: Proceedings of the 3rd Pan-Eurasian Experiment (PEEX) Conference and the 7th PEEX Meeting (Helsinki, 2017), pp. 518–520.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project nos. 18-35-00600 and 17-05-01116, as well as by Programs of Fundamental Research of the Presidium of the Russian Academy of Sciences nos. 28 and 51.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Vazaeva.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazaeva, N.V., Chkhetiani, O.G. & Maksimenkov, L.O. Organized Roll Circulation and Transport of Mineral Aerosols in the Atmospheric Boundary Layer. Izv. Atmos. Ocean. Phys. 55, 152–166 (2019). https://doi.org/10.1134/S0001433819020142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819020142

Keywords:

Navigation