Log in

RPA equation embedded into infinite-dimensional Fock space F

  • Symposium on Integrable Systems
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

To clear up both algebraic and geometric structures for integrable systems derived from self-consistent field theory, in particular, geometric aspect of the random-phase-approximation (RPA) equation is exhibited on the basis of the viewpoint of symmetry of the evolution equation. The RPA equation for an infinite-dimensional Grassmannian is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  2. H. Fukutome, Int. J. Quantum Chem. 20, 955 (1981).

    Article  Google Scholar 

  3. D. J. Thouless, Nucl. Phys. 21, 225 (1960).

    MATH  MathSciNet  Google Scholar 

  4. T. Komatsu and S. Nishiyama, to appear in Turk. J. Phys.

  5. T. Komatsu and S. Nishiyama, J. Phys. A 33, 5879 (2000); 34, 6841 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Yamamura and A. Kuriyama, Prog. Theor. Phys. Suppl. 93, 1 (1987).

    MathSciNet  Google Scholar 

  7. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, Transformation Groups for Soliton Equations, Nonlinear Integrable Systems—Classical Theory and Quantum Theory, Ed. by M. Jimbo and T. Miwa (World Sci., Singapore, 1983), p. 39.

    Google Scholar 

  8. T. Marumori, T. Maskawa, F. Sakata, and A. Kuriyama, Prog. Theor. Phys. 64, 1294 (1980).

    Article  ADS  Google Scholar 

  9. S. Nishiyama and T. Komatsu, Nuovo Cimento A 82, 429 (1984); 93, 255 (1986); 97, 513 (1987); J. Phys. G 15, 1265 (1989).

    MathSciNet  Google Scholar 

  10. P. D. Lax, Commun. Pure Appl. Math. 21, 467 (1968).

    MATH  MathSciNet  Google Scholar 

  11. D. H. Sattinger, in Nonlinear Problems: Present and Future, Ed. by A. R. Bishop, D. K. Cambell, and B. Nicolaenko (North-Holland, Amsterdam, 1982), p. 51.

    Google Scholar 

  12. V. G. Kac and A. K. Raina, Bombay Lectures on Highest Weight Representation of Infinite-Dimensional Lie Algebras (World Sci., Singapore, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 65, No. 6, 2002, pp. 1109–1015.

Original English Text Copyright © 2002 by Nishiyama, Komatsu.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishiyama, S., Komatsu, T. RPA equation embedded into infinite-dimensional Fock space F . Phys. Atom. Nuclei 65, 1076–1082 (2002). https://doi.org/10.1134/1.1490114

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1490114

Keywords

Navigation