Log in

Pannexin expression in the cerebellum

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Pannexin1 and pannexin2 are members of the pannexin gene family which are widely expressed in the central nervous system. Here we present an overview of pannexin expression and distribution in the mouse cerebellum. Pannexin1 and pannexin2 are expressed in the Purkinje cells and in some cells of the granule cell layer. Pannexin2 is also expressed in the stellate cells of the molecular layer. A differential expression of pannexin1 and pannexin2 mRNA is observed during cerebellar development. These findings constitute the first indication of the involvement of pannexin molecules in the develo** cerebellum. Although the functional relevance of these molecules remains currently unknown, the abundance of pannexins in the Purkinje cells suggests that they may contribute to the generation of cerebellar rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phelan P. Innexins: Members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta. 2005;1711:225–245.

    Article  PubMed  Google Scholar 

  2. Phelan P, Bacon JP, Davies JA, et al. Innexins: A family of invertebrate gap-junction proteins. Trends Genet. 1998;14: 348–349.

    Article  PubMed  CAS  Google Scholar 

  3. Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S. A ubiquitous family of putative gap junction molecules. Curr Biol. 2000;10:R473–474.

    Article  PubMed  CAS  Google Scholar 

  4. Vogt A, Hormuzdi SG, Monyer H. Pannexin1 and Pannexin2 expression in the develo** and mature rat brain. Brain Res Mol Brain Res. 2005;141:113–120.

    Article  PubMed  Google Scholar 

  5. Ray A, Zoidl G, Weickert S, Wahle P, Dermietzel R. Sitespecific and developmental expression of pannexin1 in the mouse nervous system. Eur J Neurosci. 2005;21:3277–3290.

    Article  PubMed  Google Scholar 

  6. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H. Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA. 2003; 100:13644–13649.

    Article  PubMed  CAS  Google Scholar 

  7. Baranova A, Ivanov D, Petrash N, et al. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics. 2004;83:706–716.

    Article  PubMed  CAS  Google Scholar 

  8. Panchin YV. Evolution of gap junction proteins — the pannexin alternative. J Exp Biol. 2005;208:1415–1419.

    Article  PubMed  Google Scholar 

  9. Weickert S, Ray A, Zoidl G, Dermietzel R. Expression of neural connexins and pannexin1 in the hippocampus and inferior olive: A quantitative approach. Brain Res Mol Brain Res. 2005;133:102–109.

    Article  PubMed  CAS  Google Scholar 

  10. Bruzzone R, Barbe MT, Jakob NJ, Monyer H. Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem. 2005;92:1033–1043.

    Article  PubMed  Google Scholar 

  11. Dusart I, Airaksinen MS, Sotelo C. Purkinje cell survival and axonal regeneration are age dependent: Anin vitro study. J Neurosci. 1997;17:3710–3726.

    PubMed  CAS  Google Scholar 

  12. Garcia-Segura LM, Baetans D, Roth J, Norman AW, Orci L. Immunohistochemical map** of calcium-binding protein immunoreactivity in the rat central nervous system. Brain Res. 1984;296:75–86.

    Article  PubMed  CAS  Google Scholar 

  13. Rogers JH. Immunoreactivity for calretinin and other calcium-binding proteins in cerebellum. Neuroscience. 1989;31:711–721.

    Article  PubMed  CAS  Google Scholar 

  14. Celio MR. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience. 1990;35:375–475.

    Article  PubMed  CAS  Google Scholar 

  15. Kutzleb C, Sanders G, Yamamoto R, et al. Paralemmin, a prenyl-palmitoyl-anchored phosphoprotein abundant in neurons and implicated in plasma membrane dynamics and cell process formation. J Cell Biol. 1998;143:795–813.

    Article  PubMed  CAS  Google Scholar 

  16. Montoro RJ, Yuste R. Gap junctions in develo** neocortex: A review. Brain Res Brain Res Rev. 2004;47:216–226.

    Article  PubMed  CAS  Google Scholar 

  17. Dermietzel R, Traub O, Hwang TK, et al. Differential expression of three gap junction proteins in develo** and mature brain tissues. Proc Natl Acad Sci USA. 1989;86: 10148–10152.

    Article  PubMed  CAS  Google Scholar 

  18. Kandler K, Katz LC. Neuronal coupling and uncoupling in the develo** nervous system. Curr Opin Neurobiol. 1995;5:98–105.

    Article  PubMed  CAS  Google Scholar 

  19. Martinez S, Geijo E, Sanchez-Vives MV, Puelles L, Gallego R. Reduced junctional permeability at interrhombomeric boundaries. Development. 1992;116:1069–1076.

    PubMed  CAS  Google Scholar 

  20. Melloy PG, Kusnierczyk MK, Meyer RA, Lo CW, Desmond ME. Overexpression of connexin43 alters the mutant phenotype of midgestational wnt-1 null mice resulting in recovery of the midbrain and cerebellum. Anat Rec A Discov Mol Cell Evol Biol. 2005;283:224–238.

    PubMed  Google Scholar 

  21. Crochet S, Fuentealba P, Timofeev I, Steriade M. Selective amplification of neocortical neuronal output by fast prepotentialsin vivo. Cereb Cortex. 2004;14:1110–1121.

    Article  PubMed  CAS  Google Scholar 

  22. Grenier F, Timofeev I, Steriade M. Focal synchronization of ripples (80–200 Hz) in neocortex and their neuronal correlates. J Neurophysiol. 2001;86:1884–1898.

    PubMed  CAS  Google Scholar 

  23. Draguhn A, Traub RD, Schmitz D, Jefferys JG. Electrical coupling underlies high-frequency oscillations in the hippocampusin vitro. Nature. 1998;394:189–192.

    Article  PubMed  CAS  Google Scholar 

  24. Schmitz D, Schuchmann S, Fisahn A. Axo-axonal coupling. A novel mechanism for ultrafast neuronal communication. Neuron. 2001;31:831–840.

    Article  PubMed  CAS  Google Scholar 

  25. Traub RD, Bibbig A, Fisahn A, LeBeau FE, Whittington MA, Buhl EH. A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur J Neurosci. 2000;12:4093–4106.

    Article  PubMed  CAS  Google Scholar 

  26. Cheron G, Gall D, Servais L, Dan B, Maex R, Schiffmann SN. Inactivation of calcium-binding protein genes induces 160 Hz oscillations in the cerebellar cortex of alert mice. J Neurosci. 2004;24:434–441.

    Article  PubMed  CAS  Google Scholar 

  27. Bennett MV, Zukin RS. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron. 2004;41: 495–511.

    Article  PubMed  CAS  Google Scholar 

  28. Bao L, Locovei S, Dahl G. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett. 2004;572: 65–68.

    Article  PubMed  CAS  Google Scholar 

  29. Stout CE, Costantin JL, Naus CC, Charles AC. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem. 2002;277:10482–1048.

    Article  PubMed  CAS  Google Scholar 

  30. Bennett M. V. Contreras JE, Bukauskas FF, Saez JC. New roles for astrocytes: Gap junction hemichannels have something to communicate. Trends Neurosci. 2003;26:610–617.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Dermietzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, A., Zoidl, G., Wahle, P. et al. Pannexin expression in the cerebellum. Cerebellum 5, 189–192 (2006). https://doi.org/10.1080/14734220500530082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220500530082

Key words

Navigation