Log in

Rhodamine scaffolds as real time chemosensors for selective detection of bisulfite in aqueous medium

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Rhodamine and its derivatives have been widely used in designing fluorescent 'turn on' cation sensors, while very few rhodamine based fluorescent probes have been reported to date for the detection of anions in water. In this article, a new rhodamine based facile and convenient 'turn on' fluorescent chemosensor 2-(2-(1-hydroxynaphthyllideneamino)ethyl)-3',6'-bis(diethylamino)spiro [isoindoline-1,9'-xanthen]-3-one (RAHN) has been developed by Schiff base condensation and characterized by standard techniques for selective detection of bisulfite anions in water. A faintly yellow colour solution of RAHN turns pink upon addition of bisulfite. Again RAHN is weakly emissive in solution but becomes strongly emissive on addition of bisulfite and the emission intensity increases gradually in the presence of increasing concentration of bisulfite. No other analytes can cause emission enhancement of RAHN, suggesting the selectivity of the probe towards bisulfite. The detection limit for bisulfite was found to be ~0.4 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Supramolecular Chemistry of Anions, ed. E. Bianchi, K. Bowman-James and E. Garcia-Espana, Wiley-VCH, New York, 1997.

    Google Scholar 

  2. P. D. Beer and P. A. Gale, Anion Recognition and Sensing: The State of the Art and Future Perspectives, Angew. Chem., Int. Ed., 2001, 40, 486–516.

    Article  CAS  Google Scholar 

  3. J. Yoon, S. K. Kim, N. J. Singh and K. S. Kim, Imidazolium receptors for the recognition of anions, Chem. Soc. Rev., 2006, 35, 355–360.

    Article  CAS  PubMed  Google Scholar 

  4. R. F. McFeeters, Use and Removal of Sulfite by Conversion to Sulfate in the Preservation of Salt-Free Cucumbers, J. FoodProt., 1998, 61, 885–890.

    CAS  Google Scholar 

  5. A. Isaac, A. J. Wain, R. G. Compton, C. Livingstone and J. Davis, A novel electroreduction strategy for the determination of sulfite, Analyst, 2005, 130, 1343–1344.

    Article  CAS  PubMed  Google Scholar 

  6. R. M. Raybaudi-Massilia, J. Mosqueda-Melgar, R. Soliva-Fortuny and O. Martin-Belloso, Microorganisms in Freshcut Fruits and Fruit Juices by Traditional and Alternative Natural Antimicrobials, Compr. Rev. Food Sci. Food Saf., 2009, 8, 157–180.

    Article  CAS  PubMed  Google Scholar 

  7. J. Xu, K. Liu, D. Di, S. Shao and Y. Guo, A selective colorimetric chemosensor for detecting SO2-3 in neutral aqueous solution, Inorg. Chem. Commun., 2007, 10, 681–684.

    Article  CAS  Google Scholar 

  8. C. Winkler, B. Frick and K. Schroecksnadel, Food preservatives sodium sulfite and sorbic acid suppress mitogen-stimulated peripheral blood mononuclear cells, Food Chem. Toxicol., 2006, 44, 2003–2007.

    Article  CAS  PubMed  Google Scholar 

  9. L. C. de Azevedo, M. M. Reis, L. F. Motta, G. O. da Rocha, L. A. Silva and J. B. De Andeade, Evaluation of the Formation and Stability of Hydroxyalkylsulfonic Acids in Wines, J. Agric. Food Chem., 2007, 55, 8670–8680.

    Article  PubMed  CAS  Google Scholar 

  10. H. Vally and N. L. Misso, Adverse reactions to the sulphite additives, Gastroenterol. Hepatol. Bed. Bench., 2012, 5, 16–23.

    PubMed  PubMed Central  Google Scholar 

  11. N. Sang, Y. Yun, H. Li, L. Hou, M. Han and G. K. Li, SO2 Inhalation Contributes to the Development and Progression of Ischemic Stroke in the Brain, Toxicol. Sci., 2010, 114, 226–236.

    Article  CAS  PubMed  Google Scholar 

  12. K. Ranguelova, A. B. Rice, O. M. Lardinois, M. Triquigneaux, N. Steinckwich, L. J. Deterding, S. Garantziotis and R. P. Mason, Sulfite-mediated oxidation of myeloperoxidase to a free radical: immuno-spin trap** detection in human neutrophils, Free Radical Biol. Med., 2013, 60, 98–106.

    Article  CAS  Google Scholar 

  13. G. Rios, N. Zakhia-Rozis, M. Chaurand, F. Richard-Forget, M. F. Samson, J. Abecassis and V. Lullien-Pellerin, Impact of durum wheat milling on deoxynivalenol distribution in the outcoming fractions, Food Addit. Contam., 2009, 26, 487–495.

    Article  CAS  Google Scholar 

  14. White granulated sugar GB317-2006, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2006.

  15. J. Rethmeier, A. Rabenstein, M. Langer and U. Fischer, Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different highperformance liquid chromatography methods, J. Chromatogr. A, 1997, 760, 295–302.

    Article  CAS  Google Scholar 

  16. M. Koch, R. Koppen, D. Siegel, A. Witt and I. Nehls, Determination of Total Sulfite in Wine by Ion Chromatography after In-Sample Oxidation, J. Agric. Food Chem., 2010, 58, 9463–9467.

    Article  CAS  PubMed  Google Scholar 

  17. M. T. Sun, H. Yu, K. Zhang, Y. J. Zhang, Y. H. Yan, D. J. Huang and S. H. Wang, Determination of Gaseous Sulfur Dioxide and Its Derivatives via Fluorescence Enhancement Based on Cyanine Dye Functionalized Carbon Nanodots, Anal. Chem., 2014, 86, 9381–9385.

    Article  CAS  PubMed  Google Scholar 

  18. T. Anand, G. Sivaraman, A. Mahesh and D. Chellappa, Aminoquinoline based highly sensitive fluorescent sensor for lead(ii) and aluminum(III) and its application in live cell imaging, Anal. Chim. Acta, 2015, 853, 596–601.

    Article  CAS  PubMed  Google Scholar 

  19. Y. M. Yang, Q. Zhao, W. Feng and F. Y. Li, Luminescent Chemodosimeters for Bioimaging, Chem. Rev., 2012, 113, 192–270.

    Article  PubMed  CAS  Google Scholar 

  20. Y. Zhang, C. Huang, X. Zhang and Z. Zhang, Chemiluminescence of sulfite based on auto-oxidation sensitized by rhodamine 6G, Anal. Chim. Acta, 1999, 391, 95–100.

    Article  Google Scholar 

  21. A. N. de Macedo, M. I. Y. Jiwa, J. Macri, V. Belostotsky, S. Hill and P. Britz-McKibbin, Strong Anion Determination in Biological Fluids by Capillary Electrophoresis for Clinical Diagnostics, Anal. Chem., 2013, 85, 11112–11120.

    Article  PubMed  CAS  Google Scholar 

  22. C. Huang, T. Jia, M. F. Tang, Q. Yin, W. P. Zhu, Y. F. Xu and X. H. Qian, Selective and ratiometric fluorescent trap** and quantification of protein vicinal dithiols and in situ dynamic tracing in living cells, J. Am. Chem. Soc., 2014, 136, 14237–14244.

    Article  CAS  PubMed  Google Scholar 

  23. Y. C. Chen, C. C. Zhu, Z. H. Yang, J. J. Chen, Y. F. He, J. J. Cen and Z. J. Guo, A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria, Angew. Chem., 2013, 125, 1732–1735.

    Article  Google Scholar 

  24. D. T. Quang and J. S. Kim, Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens, Chem. Rev., 2010, 110, 6280–6301.

    Article  CAS  Google Scholar 

  25. C.-H. Chen and F. P. Gabba, Fluoride Anion Complexation by aTriptycene-Based Distiborane: Taking Advantage of a Weak but Observable C-H—F Interaction, Angew. Chem., Int. Ed., 2017, 56, 1799–1804.

    Article  CAS  Google Scholar 

  26. M. Raizada, F. Sama and Z. A. Siddiqi, Synthesis, structure and magnetic studies of lanthanide metal-organic frameworks (Ln-MOFs): Aqueous phase highly selective sensors for picric acid as well as the arsenic ion, Polyhedron, 2018, 139, 131–141.

    Article  CAS  Google Scholar 

  27. P. R. Lakshmi, R. Manivannan, P. Jayasudhaa and K. P. Elango, An ICT-based chemodosimeter for selective dual channel sensing of cyanide in an aqueous solution, Anal. Methods, 2018, 10, 2368–2375.

    Article  Google Scholar 

  28. A. Ghosh, A. Sengupta, A. Chattopadhyay and D. Das, A single probe for sensing both acetate and aluminum(III): visible region detection, red fluorescence and human breast cancer cell imaging, RSC Adv., 2015, 5, 24194–24199.

    Article  CAS  Google Scholar 

  29. Q. Meng, Y. Wang, M. Yang, R. Zhang, R. Wang and Z. Zhang, A new fluorescent chemosensor for highly selective and sensitive detection of inorganic phosphate (Pi) in aqueous solution and living cells, RSC Adv., 2015, 5, 53189–53197.

    Article  CAS  Google Scholar 

  30. A. Stangelmayer, I. Klimant and O. S. Wolfbeis, Optical sensors for dissolved sulfur dioxide, Fresenius' J. Anal. Chem., 1998, 362, 73–76.

    Article  CAS  Google Scholar 

  31. G. J. Mohr, T. Werner, I. Oehme, C. Preininger, I. Klimant, B. Kovacs and O. S. Wolfbeis, Novel optical sensor materials based on solubilization of polar dyes in a polar polymers, Adv. Mater., 1997, 9, 1108–1113.

    Article  CAS  Google Scholar 

  32. C. Y. Liu, H. F. Wu, W. Yang and X. L. Zhang, A Simple Levulinate-based Ratiometric Fluorescent Probe for Sulfite with a Large Emission Shift, Anal. Sci., 2014, 30, 589–593.

    Article  PubMed  Google Scholar 

  33. S. Chen, P. Hou, J. X. Wang and X. Z. Song, A highly sulfiteselective ratiometric fluorescent probe based on ESIPT, RSC Adv., 2012, 2, 10869–10873.

    Article  CAS  Google Scholar 

  34. Y. Q. Sun, P. Wang, J. Liu, J. Zhang and W. Guo, A fluorescent turn-on probe for bisulfite based on hydrogen bond-inhibited C=N isomerization mechanism, Analyst, 2012, 137, 3430–3433.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Yang, F. Huo, J. Zhang, Z. **e, J. Chao, C. Yin, H. Tong, D. Liu, S. **, F. Cheng and X. Yan, A novel coumarin-based fluorescent probe for selective detection of bissulfite anions in water and sugar samples, Sens. Actuators, B, 2012, 166-167, 665–670.

    Article  CAS  Google Scholar 

  36. G. Wang, H. Qi and X. F. Yang, A ratiometric fluorescent probe for bisulphate anion, employing intramolecular charge transfer, Luminescence, 2013, 28, 97–101.

    Article  CAS  PubMed  Google Scholar 

  37. Y.-Q. Sun, J. Liu, J. Zhang, T. Yang and W. Guo, Fluorescent probe for biological gas SO2 derivatives bisulfite and sulfite, Chem. Commun., 2013, 49, 2637–2639.

    Article  CAS  Google Scholar 

  38. M.-Y. Wu, T. He, K. Li, M.-B. Wu, Z. Huang and X.-Q. Yu, A real-time colorimetric and ratiometric fluorescent probe for sulfite, Analyst, 2013, 138, 3018–3025.

    Article  CAS  PubMed  Google Scholar 

  39. M.-Y. Wu, K. Li, C.-Y. Li, J.-T. Hou and X.-Q. Yu, A water soluble near-infrared probe for colorimetric and ratiometric sensing of SO2 derivatives in living cells, Chem. Commun., 2014, 50, 183–185.

    Article  CAS  Google Scholar 

  40. H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim and J. Yoon, A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions, Chem. Soc. Rev., 2008, 37, 1465–1472.

    Article  CAS  PubMed  Google Scholar 

  41. S. K. Ko, Y. K. Yang, J. Tae and I. Shin, In Vivo Monitoring of Mercury Ions Using a Rhodamine-Based Molecular Probe, J. Am. Chem. Soc., 2006, 128, 14150–14155.

    Article  CAS  PubMed  Google Scholar 

  42. A. K. Mahapatra, S. K. Manna, D. Mandal and C. Das Mukhopadhyay, Highly Sensitive and Selective RhodamineBased “Off-On” Reversible Chemosensor for Tin (Sn4+) and Imaging in Living Cells, Inorg. Chem., 2013, 52, 10825–10834.

    Article  CAS  PubMed  Google Scholar 

  43. R. Bhowmick, A. S. M. Islam, A. Giri, A. Katarkar and M. Ali, A rhodamine based turn-on chemosensor for Fe3+ in aqueous medium and interactions of its Fe3+ complex with HSA, New J. Chem., 2017, 41, 11661–11671.

    Article  CAS  Google Scholar 

  44. G. Sivaraman, B. Vidya and D. Chellappa, Rhodamine based Selective Turn-on Sensing of Picric acid, RSC Adv., 2014, 4, 30828–30831.

    Article  CAS  Google Scholar 

  45. X.-F. Yang, M. Zhao and G. Wang, A rhodamine-based fluorescent probe selective for bisulfite anion in aqueous ethanol media, Sens. Actuators, B, 2011, 152, 8–13.

    Article  CAS  Google Scholar 

  46. P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, McGraw Hill, N. Y., 1969, pp. 235–237.

    Google Scholar 

  47. FELIX 32, Operation Manual, Version 1.1, Photon Technology International, Inc., Birmingham, NJ, 2003.

  48. S. Dey, S. Sarkar, D. Maity and P. Roy, Rhodamine based chemosensor for trivalent cations: Synthesis, spectral properties, secondary complex as sensor for arsenate and molecular logic gates, Sens. Actuators, B, 2017, 246, 518–534.

    Article  CAS  Google Scholar 

  49. V. Dujols, F. Ford and A. W. Czarnik, A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water, J. Am. Chem. Soc., 1997, 119, 7386–7387.

    Article  CAS  Google Scholar 

  50. M. Adamczyk and J. Grote, Synthesis of novel spirolactams by reaction of fluorescein methyl ester with amines, Tetrahedron Lett., 2000, 41, 807–809.

    Article  CAS  Google Scholar 

  51. N. Kumari, N. Dey and S. Bhattacharya, Rhodamine based dual probes for selective detection of mercury and fluoride ions in water using two mutually independent sensing pathways, Analyst, 2014, 139, 2370–2378.

    Article  CAS  PubMed  Google Scholar 

  52. R. Alam, R. Bhowmick, A. S. M. Islam, A. Katarkar, K. Chaudhuri and M. Ali, A rhodamine based fluorescent trivalent sensor (Fe3+, Al3+, Cr3+) with potential applications for live cell imaging and combinational logic circuits and memory devices, New J. Chem., 2017, 41, 8359–8369.

    Article  CAS  Google Scholar 

  53. G. Sivaraman and D. Chellappa, Rhodamine based sensor for naked-eye detection and live cell imaging of fluoride ions, J. Mater. Chem. B, 2013, 1, 5768–5772.

    Article  CAS  PubMed  Google Scholar 

  54. B. Sen, M. Mukherjee, S. Banerjee, S. Pala and P. Chattopadhyay, A rhodamine-based ‘turn-on’ Al3+ ion-selective reporter and the resultant complex as a secondary sensor for F- ion are applicable to living cell staining, Dalton Trans., 2015, 44, 8708–8717.

    Article  CAS  PubMed  Google Scholar 

  55. C. Würth, M. G. Gonzalez, R. Niessner, U. Panne, C. Haisch and U. R. Genger, Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods-Providing the basis for fluorescence quantum yield standards, Talanta, 2012, 90, 30–37.

    Article  PubMed  CAS  Google Scholar 

  56. A. Roy, R. Mukherjee, B. Dam, S. Dam and P. Roy, A rhodamine-based fluorescent chemosensor for Al3+: is it possible to control the metal ion selectivity of a rhodamine-6G based chemosensor?, New J. Chem., 2018, 42, 8415–8425.

    Article  CAS  Google Scholar 

  57. A. S. M. Islam, R. Bhowmick, K. Pal, A. Katarkar, K. Chaudhuri and M. Ali, A Smart Molecule for Selective Sensing of Nitric Oxide: Conversion of NO to HSNO; Relevance of Biological HSNO Formation, Inorg. Chem., 2017, 56, 4324–4331.

    Article  CAS  PubMed  Google Scholar 

  58. C. R. Lohani, J.-M. Kim, S.-Y. Chung, J. Yoon and K.-H. Lee, Colorimetric and fluorescent sensing of pyrophosphate in 100% aqueous solution by a system comprised of rhodamine B compound and Al3+complex, Analyst, 2010, 135, 2079–2084.

    Article  CAS  PubMed  Google Scholar 

  59. B. P. Joshi, J. W. Park and K. H. Lee, Ratiometric and turnon monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor, Talanta, 2009, 78, 903–909.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S. Roy is thankful to the University Grants Commission (UGC), New Delhi, for Dr D. S. Kothari Postdoctoral Fellowship [Award letter no. F.4-2/2006(BSR)/CH/16-17/0182]. Departmental instrumental facilities from DST-FIST (Ref. No. SR/FST/ CSI-235/2011) and UGC-SAP (Ref. No. F.5-9/2015/DRS-11 (SAP-11) programs are gratefully acknowledged. We gratefully acknowledge the help provided by USIC, Vidyasagar University for performing spectroscopic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Misra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Maity, A., Mudi, N. et al. Rhodamine scaffolds as real time chemosensors for selective detection of bisulfite in aqueous medium. Photochem Photobiol Sci 18, 1342–1349 (2019). https://doi.org/10.1039/c8pp00558c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00558c

Navigation