Log in

The cyclobutane dimers of 5-methylcytosine and their deamination products

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochemical reactions of 5-methylcytosine (m5C), a minor component of mammalian DNA, have been studied at a concentration of 2 mM in frozen 10 mM aqueous NaCl solution at dry ice temperature (194.5 K). For these studies, low-pressure lamps emitting mainly UVB radiation were used. We have isolated and characterized three cyclobutane dimers, namely the cis-anti (c,a) the cis-syn (c,s) and the trans-syn (t,s) forms. While the c,a and the t,s cyclobutane dimers are relatively stable towards deamination upon standing in solution at 277 K, the c,s isomer is gradually converted into the corresponding c,s m5C-thymine (Thy) mixed dimer; this latter reaction occurs considerably faster at 310 K. The t,s cyclobutane dimer is converted into the corresponding m5C-Thy mixed dimer upon incubation at 373 K, while the c,a dimer is converted into a mixture of m5C and c,a mixed dimer when incubated at 310 K. Irradiation of equimolar mixtures of Thy (1 mM) and m5C (1 mM) under similar conditions yields each of the three m5C cyclobutane dimers, as well as significant amounts of c,a, c,s and t,s m5C-Thy mixed cyclobutane dimers. These m5C-Thy dimers undergo decompositions similar in nature to the processes undergone by m5C cyclobutane dimers. Pseudo-first order rate constants for deamination of the c,s m5C homodimer and c,s m5C-Thy heterodimer at various temperatures and at pH 7.7 have been measured and the enthalpies and entropies of activation have been evaluated for the deamination processes for these two compounds. The two dimers have half-lives of about 14 and 22 h, respectively, at 310 K; however, at 273 K, the corresponding half-lives can be evaluated as being around 30 and 36 days, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CBD:

cyclobutane dimer

c,a:

cis-anti

c,s:

cis-syn

DAD:

diode array detector

DMSO:

dimethylsulfoxide

Gua:

guanine

MALDI:

matrix assisted laser desorption ionization

m5C:

5-methylcytosine

MeOH:

methanol

a:

trans-anti

Thy:

thymine

TMS:

tetramethylsilane

t,s:

trans-anti

References

  1. R. M. Tyrrell The molecular and cellular pathology of solar ultraviolet radiation, Mol. Aspects Med., 1994, 15, 1–77.

    Article  CAS  Google Scholar 

  2. R. L. P. Adams and R. H. Burdon, Molecular Biology of DNA Methylation, Springer-Verlag, New York, 1984, Table 1.2, pp. 6-7.

    Google Scholar 

  3. S. Friso, S.-W. Choi, G. G. Dolnikowski, J. Selhub A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry, Anal. Chem., 2002, 74, 4526–4531.

    Article  CAS  Google Scholar 

  4. M. F. Paz, M. F. Fraga, S. Avila, M. Guo, M. Pollan, J. G. Herman, M. Esteller A systematic profile of DNA methylation in human cancer cell lines, Cancer Res., 2003, 63, 1114–1121.

    CAS  PubMed  Google Scholar 

  5. K. D. Robertson DNA methylation and chromatin-unraveling the tangled web, Oncogene, 2003, 21, 5361–5369.

    Article  Google Scholar 

  6. M. Szyf Targeting DNA methylation in cancer, Ageing Res. Rev., 2003, 2, 299–328.

    Article  CAS  Google Scholar 

  7. B. Richardson Impact of aging on DNA methylation, Ageing Res. Rev., 2003, 2, 245–261.

    Article  CAS  Google Scholar 

  8. Y.-H. You, C. Li, G. P. Pfeifer Involvement of 5-methylcytosine in sunlight-induced mutagenesis, J. Mol. Biol., 1999, 293, 493–503.

    Article  CAS  Google Scholar 

  9. Y.-H. You, G. P. Pfeifer Similarities in sunlight-induced mutational spectra of CpG-methylated transgenes and the p53 gene in skin cancer point to an important role of 5-methylcytosine residues in solar UV mutagenesis, J. Mol. Biol., 2001, 305, 389–399.

    Article  CAS  Google Scholar 

  10. H. Ikehata, T. Masuda, H. Sakata, T. Ono Analysis of mutation spectra in UVB-exposed mouse skin epidermis and dermis: frequent occurrence of C-T transition at methylated CpG-associated dipyrimidine sites, Environ. Mol. Mutagen., 2003, 41, 280–292.

    Article  CAS  Google Scholar 

  11. D.-H. Lee, G. P. Pfeifer Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis, J. Biol. Chem., 2003, 278, 10314–10321.

    Article  CAS  Google Scholar 

  12. J. E. Gill Fluorescence of 5-methylcytosine, Photochem. Photobiol., 1970, 11, 259–269.

    Article  CAS  Google Scholar 

  13. J. E. Gill Fluorescence of synthetic DNAs at room temperature and neutral pH, Biochem. Biophys. Res. Commun., 1971, 44, 779–785.

    Article  CAS  Google Scholar 

  14. J. E. Gill, J. A. Mazrimas, C. C. Bishop, Jr. Physical studies on synthetic DNAs containing 5-methylcytosine, Biochim. Biophys. Acta, 1974, 335, 330–348.

    Article  CAS  Google Scholar 

  15. R. J. Malone, A. M. Miller, B. Kohler Singlet excited-state lifetimes of cytosine derivatives measured by femtosecond transient absorption, Photochem. Photobiol., 2003, 77, 158–164.

    Article  CAS  Google Scholar 

  16. A. Sharonov, T. Gustavsson, S. Marguet, D. Markovitsi Photophysical properties of 5-methylcytidine, Photochem. Photobiol. Sci., 2003, 2, 362–364.

    Article  CAS  Google Scholar 

  17. J. Cadet and P. Vigny, The photochemistry of nucleic acids, in Bioorganic Photochemistry, ed. H. Morrison, John Wiley and Sons, New York, 1990, vol. 1, pp. 1-272.

  18. R. J. H. Davies Ultraviolet radiation damage in DNA, Biochem. Soc. Trans., 1995, 23, 407–418.

    Article  CAS  Google Scholar 

  19. J. Cadet, M. Berger, T. Douki, B. Morin, S. Raoul, J. Ravanat, S. Spinelli Effects of UV and visible radiation on DNA - Final base damage, Biol. Chem., 1997, 378, 1275–1286.

    CAS  PubMed  Google Scholar 

  20. J. Ravanat, T. Douki, J. Cadet Direct and indirect effects of UV radiation on DNA, J. Photochem. Photobiol. B, 2001, 63, 88–102.

    Article  CAS  Google Scholar 

  21. R. P. Sinha, D.-P. Häder UV-induced DNA damage and repair: a review, Photochem. Photobiol. Sci., 2002, 1, 225–236.

    Article  CAS  Google Scholar 

  22. A. A. Shaw, M. D. Shetlar 3-Ureidoacrylonitriles: novel products from the photoisomerization of cytosine, 5-methylcytosine and related compounds, J. Am. Chem. Soc., 1990, 112, 7737–7742.

    Google Scholar 

  23. A. A. Shaw, M. D. Shetlar Ring-opening photoreactions of cytosine and 5-methylcytosine with aliphatic alcohols, Photochem. Photobiol., 1989, 49, 267–271.

    Article  CAS  Google Scholar 

  24. K. Hom, G. Strahan, M. D. Shetlar Ring opening photoreactions of cytosine and uracil with ethylamine, Photochem. Photobiol., 2000, 71, 243–253.

    Article  CAS  Google Scholar 

  25. L. Celewicz, M. D. Shetlar The photochemistry of 5-methylcytosine and 5-methyl-2’-deoxycytidine in aqueous solution, Photochem. Photobiol., 1992, 55, 823–830.

    Article  CAS  Google Scholar 

  26. E. Privat, L. C. Sowers Photochemical deamination and demethylation of 5-methylcytosine, Chem. Res. Toxicol., 1996, 9, 745–750.

    Article  CAS  Google Scholar 

  27. M. Ehrlich, M.-F. Dove Photolysis at 254 nm of 5-methyldeoxycytidine, Photobiochem. Photobiophys., 1983, 6, 121–126.

    CAS  Google Scholar 

  28. M. Ehrlich, M.-F. Dove, L.-H. Huang Photolysis of methylated DNA, Photobiochem. Photobiophys., 1986, 11, 73–79.

    CAS  Google Scholar 

  29. T. Barna, J. Malinowski, P. Holton, M. Ruchirawat, F. F. Becker, J.-N. Lapeyre UV-induced photoproducts of 5-methylcytosine in a DNA context, Nucleic Acids Res., 1988, 16, 3327–3340.

    Article  CAS  Google Scholar 

  30. T. Douki, J. Cadet Formation of cyclobutane dimers and (6–4) photoproducts upon far-UV photolysis of 5-methylcytosine-containing dinucleoside monophosphates, Biochemistry, 1994, 33, 11942–11950.

    Article  CAS  Google Scholar 

  31. D. L. Mitchell Effects of cytosine methylation on pyrimidine dimer formation in DNA, Photochem. Photobiol., 2000, 71, 162–165.

    Article  CAS  Google Scholar 

  32. G. J. Fisher and H. E. Johns, Pyrimidine photodimers, in Photochemistry and Photobiology of Nucleic Acids, vol. 1, ed. S. Y. Wang, Academic Press, New York, 1976, pp. 225–294. pp. 284–286. (c) Table 13 on p. 277.

    Article  CAS  Google Scholar 

  33. D. L. Wulff, G. Fraenkel On the nature of thymine photoproduct, Biochim. Biophys. Acta, 1961, 51, 332–339.

    Article  CAS  Google Scholar 

  34. M. N. Khattak, S. Y. Wang The photochemical mechanism of pyrimidine cyclobutyl dimerization, Tetrahedron, 1972, 28, 945–957.

    Article  CAS  Google Scholar 

  35. A. J. Varghese Photochemical reactions of cytosine nucleosides in frozen aqueous solution and in deoxyribonucleic acid, Biochemistry, 1971, 10, 2194–2199.

    Article  CAS  Google Scholar 

  36. T. Montenay-Garestier, M. Charlier and C. Hélène, Aggregate formation, excited-state interactions, and photochemical reactions in frozen aqueous solutions of nucleic acid constituents, in Photochemistry and Photobiology of Nucleic Acids, ed. S. Y. Wang, Academic Press, New York, 1976, vol. 1, pp. 381-417.

  37. D. Shugar, J. J. Fox Spectrophotometric studies of nucleic acid derivatives and related compounds as a function of pH, Biochim. Biophys. Acta, 1952, 9, 199–218.

    Article  CAS  Google Scholar 

  38. R. Chang, Physical Chemistry for the Chemical and Biological Sciences, University Science Books, Sausalito, CA, 2000, pp. 476-480.

    Google Scholar 

  39. D. G. E. Lemaire, B. P. Ruzsicska Kinetic analysis of the deamination reactions of cyclobutane dimers of thymidylyl-3’,5’-2’-deoxycytidine and 2’-deoxycytidylyl-3’,5’-thymidine, Biochemistry, 1993, 32, 2525–2533.

    Article  CAS  Google Scholar 

  40. T. Douki, J. Cadet Far-UV photochemistry and photosensitization of 2- deoxycytidylyl-(3’-5’)-thymidine: isolation and characterization of the main photoproducts, J. Photochem. Photobiol. B, 1992, 15, 199–213.

    Article  CAS  Google Scholar 

  41. P. V. Hariharan, H. E. Johns Dimer photoproducts in cytidylyl-(3’-5’)-cytidine, Photochem. Photobiol., 1968, 8, 11–22.

    Article  CAS  Google Scholar 

  42. B. Skalski, G. Wenska, S. Paszyc, Z. Stefaniak Photocycloaddition of cytosine to 5-methoxyuracil in dinucleotide model compound, Can. J. Chem., 1987, 66, 1027–1031.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin D. Shetlar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shetlar, M.D., Basus, V.J., Falick, A.M. et al. The cyclobutane dimers of 5-methylcytosine and their deamination products. Photochem Photobiol Sci 3, 968–979 (2004). https://doi.org/10.1039/b404271a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b404271a

Navigation