Log in

Interactive effects of ozone depletion and climate change on biogeochemical cycles

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The effects of ozone depletion on global biogeochemical cycles, via increased UV-B radiation at the Earth’s surface, have continued to be documented over the past 4 years. In this report we also document various effects of UV-B that interact with global climate change because the detailed interactions between ozone depletion and climate change are central to the prediction and evaluation of future Earth environmental conditions.

There is increasing evidence that elevated UV-B has significant effects on the terrestrial biosphere with important implications for the cycling of carbon, nitrogen and other elements. Increased UV has been shown to induce carbon monoxide production from dead plant matter in terrestrial ecosystems, nitrogen oxide production from Arctic and Antarctic snowpacks, and halogenated substances from several terrestrial ecosystems. New studies on UV effects on the decomposition of dead leaf material confirm that these effects are complex and species-specific. Decomposition can be retarded, accelerated or remain unchanged. It has been difficult to relate effects of UV on decomposition rates to leaf litter chemistry, as this is very variable. However, new evidence shows UV effects on some fungi, bacterial communities and soil fauna that could play roles in decomposition and nutrient cycling. An important new result is that not only is nitrogen cycling in soils perturbed significantly by increased UV-B, but that these effects persist for over a decade. As nitrogen cycling is temperature dependent, this finding clearly links the impacts of ozone depletion to the ability of plants to use nitrogen in a warming global environment. There are many other potential interactions between UV and climate change impacts on terrestrial biogeochemical cycles that remain to be quantified.

There is also new evidence that UV-B strongly influences aquatic carbon, nitrogen, sulfur, and metals cycling that affect a wide range of life processes. UV-B accelerates the decomposition of colored dissolved organic matter (CDOM) entering the sea via terrestrial runoff, thus having important effects on oceanic carbon cycle dynamics. Since UV-B influences the distribution of CDOM, there is an impact of UV-B on estimates of oceanic productivity based on remote sensing of ocean color. Thus, oceanic productivity estimates based on remote sensing require estimates of CDOM distributions. Recent research shows that UV-B transforms dissolved organic matter to dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium and to organic substances that are either more or less readily available to micro-organisms. The extent of these transformations is correlated with loss of UV absorbance by the organic matter. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply, which occur concurrently with increased UV-B exposure, have synergistic influences on the penetration of light into aquatic ecosystems. New research has confirmed that UV affects the biological availability of iron, copper and other trace metals in aquatic environments thus potentially affecting the growth of phytoplankton and other microorganisms that are involved in carbon and nitrogen cycling. There are several instances where UV-B modifies the air–sea exchange of trace gases that in turn alter atmospheric chemistry, including the carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. R. G. Zepp, T. V. Callaghan, D. J. Erickson, III Effects of enhanced solar ultraviolet radiation on biogeochemical cycles, J. Photochem. Photobiol. B, 1998, 46, 69–82.

    Article  CAS  Google Scholar 

  2. R. G. Zepp, T. V. Callaghan, D. J. Erickson, III Effects of increased solar ultraviolet radiation on biogeochemical cycles, Ambio, 1995, 24, 181–187.

    Google Scholar 

  3. IPCC, IPCC guidelines for national greenhouse gas inventories, OECD, Paris, France, 1997.

    Google Scholar 

  4. N. D. Paul, T. V. Callaghan, S. Moody, D. Gwynn-Jones, U. Johanson and C. Gehrke, in Stratospheric ozone depletion: the effects of enhanced UV-B radiation on terrestrial ecosystems, ed. J. Rozema, Backhuys Press, Leiden, 1999, pp. 117–134.

  5. C. L. Ballaré, M. C. Rousseaux, P. S. Searles, J. G. Zaller, C. V. Giordano, T. M. Robson, M. M. Caldwell, O. E. Sala, A. L. Scopel Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (Southern Argentina). An overview of recent progress, J. Photochem. Photobiol. B, 2001, 62, 67–77.

    Article  PubMed  Google Scholar 

  6. C. Gehrke Effects of enhanced UV-B radiation on production-related properties of a Sphagnum fuscum dominated subarctic bog, Funct. Ecol., 1998, 12, 940–947.

    Article  Google Scholar 

  7. M. Turunen, W. Heller, S. Stich, H. Sandermann, M.-L. Sutinen, Y. Norokorpi The effects of UV exclusion on the soluble phenolics of young Scots pine seedlings in the subarctic., Environ. Poll., 1999, 106, 219–228.

    Article  CAS  Google Scholar 

  8. K. J. Duguay, J. N. Klironomos Direct and indirect effects of enhanced UV-B radiation on the decomposition and competitive abilities of saprobic fungi, Appl. Soil. Ecol., 2000, 14, 157–164.

    Article  Google Scholar 

  9. S. A. Moody, K. K. Newsham, P. G. Ayres, N. D. Paul Variation in the responses of litter and phylloplane fungi to UV-B radiation (290–315 nm)., Mycol. Res., 1999, 103, 1469–1477.

    Article  Google Scholar 

  10. P. S. Searles, S. D. Flint, S. B. Diaz, M. C. Rousseaux, C. L. Ballaré, M. M. Caldwell Solar ultraviolet-B radiation influence on Sphagnum bog and Carex fen ecosystems: first field season findings in Tierra del Fuego, Argentina, Global Change Biology, 1999, 5, 225–234.

    Article  Google Scholar 

  11. D. Johnson, C. D. Campbell, D. Gwynn-Jones, J. A. Lee, T. V. Callaghan Arctic soil microorganisms respond more to long-term ozone depletion than to atmospheric CO2, Nature, 2002, 416, 82–83.

    Article  CAS  PubMed  Google Scholar 

  12. S. Moody, N. D. Paul, L. O. Björn, T. V. Callaghan, J. A. Lee, Y. Manetas, J. Rozema, D. Gwynn-Jones, U. Johanson, A. Kyparissis, A. Oudejans The direct effects of UVB radiation on Betula pubescens litter decomposing at four European field sites., Plant Ecol., 2001, 154, 29–36.

    Article  Google Scholar 

  13. K. K. Newsham, A. R. McLeod, J. D. Roberts, P. D. Greenslade, B. A. Emmet Direct effects of elevated UV-B radiation on the decomposition of Quercus robur leaf litter, Oikos, 1997, 79, 592–602.

    Article  Google Scholar 

  14. D. W. Schade, R. M. Hoffman, P. J. Crutzen CO emissions from degrading plant matter: measurements (I), Tellus, 1999, 51B, 889–908.

    Article  CAS  Google Scholar 

  15. K. Kisselle, R. Zepp, R. Burke, A. Pinto, M. Bustamante, S. Opsahl, R. Varella and L. Viana, Seasonal soil fluxes of carbon monoxide in burned and unburned Brazilian savannas, J. Geophys. Res. D, 2002, in press.

    Google Scholar 

  16. D. W. Schade, P. J. Crutzen CO emissions from degrading plant matter: estimate of a global source strength (II), Tellus, 1999, 51B, 909–918.

    Article  CAS  Google Scholar 

  17. M. C. Peterson, R. E. Honrath Observations of rapid photochemical destruction of ozone in snowpack interstitial air, Geophys. Res. Lett., 2001, 28, 511–514.

    Article  CAS  Google Scholar 

  18. R. E. Honrath, M. C. Peterson, M. P. Dziobak, J. E. Dibb, M. A. Arsenault, S. A. Green Release of NOx from sunlight-irradiated midlatitude snow, Geophys. Res. Lett., 2000, 27, 2237–2240.

    Article  CAS  Google Scholar 

  19. A. E. Jones, R. Weller, P. S. Anderson, H. W. Jacobi, E. W. Wolff, O. Schrems, H. Miller Measurements of NOx emissions from the Antarctic snowpack, Geophys. Res. Lett., 2001, 28, 1499–1502.

    Article  CAS  Google Scholar 

  20. Y. Dubowski, M. R. Hoffmann Photochemical transformations in ice: implications for the fate of chemical species, Geophys. Res. Lett., 2000, 27, 3321–3324.

    Article  CAS  Google Scholar 

  21. J. Rozema, B. Kooi, R. Broekman and L. Kuijper, in Stratospheric ozone depletion: the effects of enhanced UV-B radiation on terrestrial ecosystems, ed. J. Rozema, Backhuys Press, Amsterdam, 1999, pp. 135–156.

  22. K. K. Newsham, P. D. Greenslade, V. H. Kennedy, A. R. McLeod Elevated UV-B radiation incident on Quercus robur leaf canopies enhances decomposition of resulting leaf litter in soil, Global Change Biology, 1999, 5, 403–409.

    Article  Google Scholar 

  23. K. K. Newsham, J. M. Anderson, T. H. Sparks, P. Splatt, C. Woods, A. R. McLeod UV-B effect on Quercus robur leaf litter decomposition persists over four years, Global Change Biology, 2001, 7, 479–483.

    Article  Google Scholar 

  24. W. J. Cybulski, W. T. Peterjohn, J. H. Sullivan The influence of elevated ultraviolet-B radiation (UV-B) on tissue quality and decomposition of loblolly pine (Pinus taeda L.) needles, Environ. Exp. Bot., 2000, 44, 231–241.

    Article  CAS  PubMed  Google Scholar 

  25. K. K. Newsham, P. Platt, P. A. Coward, P. D. Greenslade, A. R. McLeod, J. M. Anderson Negligible influence of elevated UV-B radiation on leaf litter quality of Quercus robur, Soil Biol. Biochem., 2001, 33, 659–665.

    Article  CAS  Google Scholar 

  26. D.-P. Häder, H. D. Kumar, R. C. Smith, R. C. Worrest Aquatic ecosystems: effects of increased solar ultraviolet radiation and interactions with other climatic change factors., Photochem. Photobiol. Sci., 2003, in press.

    Google Scholar 

  27. J. W. M. van de Staaij, J. Rozema and R. Aerts in Stratospheric ozone depletion: the effects of enhanced UV-B radiation on terrestrial ecosystems, ed. J. Rozema, Backhuys Press, Amsterdam, 1999, pp. 159–171.

  28. B. Sølheim, U. Johanson, T. V. Callaghan, J. A. Lee, D. Gwynn Jones, L. O. Björn The nitrogen fixation potential of arctic cryptogam species is influenced by enhanced UV-B radiation, Oecologia, 2002, 133, 90–93.

    Article  PubMed  Google Scholar 

  29. M. M. Caldwell, C. L. Ballaré, J. F. Bornman, S. D. Flint, L. O. Bjorn, A. H. Teramura, G. Kulandavailu, M. Tevini Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors, Photochem. Photobiol. Sci., 2003, in press.

    Google Scholar 

  30. H. A. Verhoef, J. M. H. Verspangen, H. R. Zoomer Direct and indirect effects of ultraviolet-B radiation on soil biota, decomposition and nutrient fluxes in dune grassland soil systems, Biol. Fert. Soils, 2000, 31, 366–371.

    Article  CAS  Google Scholar 

  31. J. N. Klironomos, M. F. Allen UV-B mediated changes on below-ground communities associated with the roots of Acer saccharum., Funct. Ecol., 1995, 9, 923–930.

    Article  Google Scholar 

  32. R. B. Myneni, J. Dong, C. J. Tucker, R. K. Kaufmann, P. E. Kauppi, J. Liski, L. Zhou, V. Alexeyev, M. K. Hughes A large carbon sink in the woody biomass of northern forests, Proc. Nat. Acad. Sci. USA, 2001, 98, 14784–14789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. R. B. Myneni, C. D. Keeling, C. J. Tucker, G. Asrar, R. R. Nemani Increased plant growth in the northern high latitudes from 1981–1991, Nature, 1997, 386, 698–702.

    Article  CAS  Google Scholar 

  34. J. M. Melillo, A. D. McGuire, D. W. Kicklighter, B. Moore, III, C. J. Vorosmarty, A. L. Schloss Global change and terrestrial net primary production, Nature, 1993, 363, 234–240.

    Article  CAS  Google Scholar 

  35. R. A. Betts, P. M. Cox, S. E. Lee, F. I. Woodward Contrasting physiological and structural vegetation feedbacks in climate change simulations, Nature, 1997, 387, 796–799.

    Article  CAS  Google Scholar 

  36. P. Cox, R. Betts, C. Jones, S. Spall, I. Totterdell Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 2000, 408, 184–187.

    Article  CAS  PubMed  Google Scholar 

  37. R. Harding, P. Kuhry, T. R. Christensen, M. T. Sykes, R. Dankers, S. van der Linden Climate feedbacks at the tundra-taiga interface, Ambio Special Report, 2002 47–55.

    Google Scholar 

  38. O. Tenow Hazards to a mountain birch forest—Abisko in perspective. Plant ecology in the subarctic Swedish Lapland, Ecol. Bulls., 1996, 45, 104–114.

    Google Scholar 

  39. S. Neuvonen, P. Niemelä, T. Virtanen Climate change and insect outbreaks in boreal forests: the role of winter temperatures, Ecol. Bulls., 1999, 47, 63–67.

    Google Scholar 

  40. N. Buck, T. V. Callaghan Impacts of increased UV-B radiation on the autumn moth caterpillar Epirrita autumnata. In: Animal responses to global change, Ecol. Bulls., 1999, 47, 68–76.

    Google Scholar 

  41. A. Lavola, R. Julkunen-Tiitto, P. Aphalo, T. de la Rosa, T. Lehto The effect of UV-B radiation on UV-absorbing secondary metabolites in birch seedlings grown under simulated forest soil conditions, New Phytol., 1997, 137, 617–621.

    Article  CAS  Google Scholar 

  42. A. Lavola, R. Julkunen-Tiitto, H. Roininen, P. Aphalo Host-plant preference of an insect herbivore mediated by UV-B and CO2 in relation to plant secondarv metabolites, Biochem. Syst. Ecol., 1998, 26.

  43. K. A. Kvenvolden Gas hydrate, humans, Ann. N. Y. Acad. Sci., 2000, 912, 17–22.

    Article  CAS  Google Scholar 

  44. C. H. Dimmer, P. G. Simmonds, G. Nickless, M. R. Bassford Biogenic fluxes of halomethanes from Irish Peatland ecosystems, Atmos. Environ., 2001, 35, 321–330.

    Article  CAS  Google Scholar 

  45. R. C. Rhew, B. J. Miller, R. Weiss Natural methyl bromide and methyl chloride emissions from coastal salt marshes, Nature, 2000, 403, 292–295.

    Article  CAS  PubMed  Google Scholar 

  46. Y. Yokouchi, Y. Noijiri, L. A. Barrie, D. Toom-Sauntry, T. Machida, Y. Inuzuka, H. Akimoto, H.-J. Li, Y. Fu**uma, S. Aoki A strong source of methyl chloride to the atmosphere from tropical coastal land, Nature, 2000, 403, 295–298.

    Article  CAS  PubMed  Google Scholar 

  47. R. L. McKenzie, L. O. Björn, A. Bais and M. Ilyas, Changes in biologically active ultraviolet radiation reaching the Earth’s surface, Photochem. Photobiol. Sci., 2003, in press.

    Google Scholar 

  48. K. R. Solomon, X. Tang, S. R. Wilson, P. Zanis, A. F. Bais Changes in tropospheric composition and air quality due to ozone depletion, Photochem. Photobiol. Sci., 2003, in press.

    Google Scholar 

  49. W. C. Oechel, S. T. Hastings, G. Vourlitis, M. Jenkins, G. Riechers, N. Grulke Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source, Nature, 1993, 361, 520–523.

    Article  Google Scholar 

  50. W. C. Oechel, G. L. Vourlitis, S. J. Hastings, S. A. Bochkarev Change in arctic CO2 flux over two decades: Effects of climate change at Barrow, Alaska, Ecol. Apps, 1995, 5, 846–855.

    Article  Google Scholar 

  51. J. M. Melillo, D. W. Kicklighter, A. D. McGuire, W. T. Peterjohn and K. M. Newkirk, in Role of nonliving organic matter in the earth’s carbon cycle eds. R.G. Zepp and C.H. Sonntag, John Wiley & Sons, New York, 1995, pp. 175–189.

  52. A. D. McGuire and J. E. Hobbie, in Modeling the Arctic System: A Workshop Report of the Arctic System Science Program, The Arctic Research Consortium of the United States, Fairbanks, Alaska, 1997, pp. 53–54.

    Google Scholar 

  53. M. G. Öqvist and B. H. Svensson, Vascular plants as regulators of emissions from a subarctic mire ecosystem., Geophys. Res. Lett., in press.

  54. T. R. Christensen, A. Joabsson, L. Ström, N. Panikov, M. Mastepanov, M. Öquist, B. H. Svensson, H. Nykänen, P. Martikainen and H. Oskarsson Factors Controlling Large Scale Variations in methane Emissions from Wetlands, submitted.

  55. R. Niemi, P. J. Martikainen, J. Silvola, A. Wulff, S. Turtola, T. Holopainen Elevated UV-B radiation alters fluxes of methane and carbon dioxide in peatland microcosms., Global Change Biology, 2002, 8, 361.

    Article  Google Scholar 

  56. M. M. Couteaux, M. Mousseau, M. L. Celerier, P. Bottner Increased atmospheric CO2 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities, Oikos, 1991, 61.

  57. M. F. Cotrufo, P. Ineson, A. P. Rowland Decomposition of tree litters grown under elevated CO2: effect of litter quality., Plant and Soil, 1994, 163, 121–130.

    Article  Google Scholar 

  58. R. L. Norby, M. F. Cotrufo A question of litter quality, Nature, 1998, 396, 17–18.

    Article  CAS  Google Scholar 

  59. T. A. J. Kuhlbusch, P. J. Crutzen A global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2, Global Biogeochem. Cycles, 1996, 9, 491–501.

    Article  Google Scholar 

  60. T. A. J. Kuhlbusch, J. M. Lobert, P. J. Crutzen, P. Warneck Molecular nitrogen emissions from denitrification during biomass burning, Nature, 1991, 351, 135–137.

    Article  CAS  Google Scholar 

  61. B. A. Kimball, P. I. Pinter, R. Garcia, R. LaMorte, G. W. Wall, D. J. Hunsaker, G. Wechsung, F. Wechsung, T. Kartschall Productivity and water use of wheat under free-air CO2 enrichment., Global Change Biology, 1995, 1, 429–442.

    Article  Google Scholar 

  62. L. Negash, L. O. Björn Stomatal closure by ultraviolet radiation, Physiol. Plant., 1986, 66, 360–364.

    Article  Google Scholar 

  63. J. B. Kerr, G. Seckmeyer, A. F. Bais, G. Bernhard, M. Blumthaler, S. B. Diaz, N. Krotkov, D. Lubin, S. Madronich, R. L. McKenzie, A. A. Sabziparvar and J. Verdebout, in Scientific Assessment of Ozone Depletion: 2002, WMO (World Meteorological Organization), Global Ozone Research and Monitoring Project, Report No. 47, 2003, in press.

  64. A. G. J. Buma, M. K. D. Boer, P. Boelen Depth distributions of DNA damage in Antarctic marine phyto- and bacterioplankton exposed to summertime UV radiation., J. Phycol., 2001, 37, 200–208.

    Article  CAS  Google Scholar 

  65. A. T. Banaszak, P. J. Neale Ultraviolet radiation sensitivity of photosynthesis in phytoplankton from an estuarine environment, Limnol. Oceanogr., 2001, 46, 592–603.

    Article  Google Scholar 

  66. K. Barbeau, E. L. Rue, K. W. Bruland A. Butler Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands, Nature, 2001, 413, 409–413.

    Article  CAS  PubMed  Google Scholar 

  67. S. W. Chisholm Stirring times in the Southern Ocean, Nature, 2000, 407, 685–687.

    Article  CAS  PubMed  Google Scholar 

  68. D. J. Erickson, III, J. L. Hernandez, P. Ginoux, W. Gregg, R. Kawa, M. Behrenfeld, W. Esaias, C. McClain, J. Christian Atmospheric iron deposition to the surface ocean and remotely sensed color: A global satellite correlation analysis, EOS Trans. AGU, 2001, 81, F57.

    Google Scholar 

  69. W. W. Gregg, M. E. Conkwright Decadal changes in global ocean chlorophyll, Geophys. Res. Lett., 2002, 29.

  70. D. P. Häder, H. D. Kumar, R. C. Smith, R. C. Worrest Effects on aquatic ecosystems, J. Photochem. Photobiol. B, 1998, 46, 53–68.

    Article  Google Scholar 

  71. D. M. Leech, C. E. Williamson In situ exposure to ultraviolet radiation alters the depth distribution of Daphnia, Limnol. Oceanogr., 2001, 46, 416–420.

    Article  Google Scholar 

  72. S. C. Rhode, M. Pawlowski, R. Tollrian The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia, Nature, 2001, 412, 69–72.

    Article  CAS  PubMed  Google Scholar 

  73. W. H. Jeffrey, P. Aas, M. M. Lyons, R. B. Coffin, R. J. Pledger, D. L. Mitchell Ambient solar-radiation induced photodamage in marine bacterioplankton, Photochem. Photobiol., 1996, 64, 419–427.

    Article  CAS  Google Scholar 

  74. W. H. Jeffrey, R. J. Pledger, P. Aas, S. Hager, R. B. Coffin, R. Vonhaven, D. L. Mitchell Diel, depth profiles of DNA photodamage in bacterioplankton exposed to ambient solar ultraviolet radiation, Marine Ecol. Prog. Ser., 1996, 137, 283–291.

    Article  CAS  Google Scholar 

  75. Y. Huot, W. H. Jeffrey, R. F. Davis, J. J. Cullen Damage to DNA in bacterioplankton: A model of damage by ultraviolet radiation and its repair as influenced by vertical mixing, Photochem. Photobiol., 2000, 72, 62–74.

    Article  CAS  PubMed  Google Scholar 

  76. S. W. Wilhelm, M. G. Weinbauer, C. A. Suttle, W. H. Jeffrey The role of sunlight in the removal and repair of viruses in the sea, Limnol. Oceanogr., 1998, 43, 586–592.

    Article  Google Scholar 

  77. H. Gao, R. G. Zepp Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States, Environ. Sci. Technol., 1998, 32, 2940–2946.

    Article  CAS  Google Scholar 

  78. S. C. Johannessen, W. L. Miller Quantum yield for the photochemical production of dissolved inorganic carbon in the ocean, Mar. Chem., 2001, 76, 271–283.

    Article  CAS  Google Scholar 

  79. A. V. Vähätalo, M. S. Salonen, P. Taalas, K. Salonen Spectrum of the quantum yield for photochemical mineralization of dissolved organic carbon in a humic lake, Limnol. Oceanogr., 2001, 45, 664–676.

    Article  Google Scholar 

  80. S. Bertilsson, L. J. Tranvik Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton, Limnol. Oceanogr., 1998, 43, 885–895.

    Article  CAS  Google Scholar 

  81. S. Bertilsson, L. J. Tranvik Photochemical transformation of dissolved organic matter in lakes, Limnol. Oceanogr., 2000, 45, 753–762.

    Article  CAS  Google Scholar 

  82. I. Obernosterer, G. J. Herndl Differences in the optical and biological reactivity of the humic and nonhumic dissolved organic carbon component in two contrasting coastal marine environments, Limnol. Oceanogr., 2000, 45, 1120–1129.

    Article  CAS  Google Scholar 

  83. I. Obernosterer, B. Reitner, G. J. Herndl Contrasting effects of solar radiation on dissolved organic matter and its bioavailability to marine bacterioplankton, Limnol. Oceanogr., 1999, 44, 1645–1654.

    Article  Google Scholar 

  84. M. A. Moran, W. M. Sheldon, J. E. Sheldon Biodegradation of riverine dissolved organic carbon in five estuaries of the southeastern United States, Estuaries, 1999, 22, 55–64.

    Article  CAS  Google Scholar 

  85. M. A. Moran, W. M. Sheldon, R. G. Zepp Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter, Limnol. Oceanogr., 2000, 45, 1254–1264.

    Article  CAS  Google Scholar 

  86. M. A. Moran and R. G. Zepp, in Microbial Ecology Of The Oceans, ed. D. Kirchman, Wiley, New York, 2000, pp. 201–228.

  87. K. Mopper and D. J. Kieber, in The effects of UV radiation in the marine environment, eds. S. de Mora, S. Demers and M. Vernet, Cambridge University Press, 2000, pp. 101–129.

  88. A. M. Anesio, L. J. Tranvik, W. Graneli Production of inorganic carbon from aquatic macrophytes by solar radiation, Ecology, 1999, 80, 1852–1859.

    Article  Google Scholar 

  89. R. Benner, B. Biddanda Photochemical transformations of surface and deep marine dissolved organic matter: Effects on bacterial growth, Limnol. Oceanogr., 1998, 43, 1373–1378.

    Article  CAS  Google Scholar 

  90. A. M. Anesio, C. M. T. Denward, L. J. Tranvik, W. Graneli Decreased bacterial growth on vascular plant detritus due to photochemical modification, Aquat. Microb. Ecol., 1999, 17, 159–165.

    Article  Google Scholar 

  91. L. J. Tranvik, S. Kokalj Decreased biodegradability of algal DOC due to interactive effects of UV radiation and humic matter, Aquat. Microb. Ecol., 1998, 14, 301–307.

    Article  Google Scholar 

  92. S. Ziegler, R. Benner Effects of solar radiation on dissolved organic matter in a subtropical seagrass meadow, Limnol. Oceanogr., 2000, 45, 257–266.

    Article  CAS  Google Scholar 

  93. S. Opsahl, R. G. Zepp Photochemically-induced alteration of stable carbon isotope ratios (*13C) in terrigenous dissolved organic carbon, Geophys. Res. Lett., 2001, 28, 2417–2420.

    Article  CAS  Google Scholar 

  94. C. L. Osburn, D. P. Morris, K. A. Thorn, R. E. Moeller Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation, Biogeochem., 2001, 54, 251–278.

    Article  CAS  Google Scholar 

  95. S. S. Andrews, S. Caron, O. C. Zafiriou Photochemical oxygen demand in marine waters: A major sink for colored dissolved organic matter?, Limnol. Oceanogr., 2000, 45, 267–277.

    Article  CAS  Google Scholar 

  96. P. P. Vaughan, N. V. Blough Photochemical formation of hydroxyl radical by constituents of natural waters, Environ. Sci. Technol., 1998, 32, 2947–2953.

    Article  Google Scholar 

  97. B. H. Yocis, D. J. Kieber, K. Mopper Photochemical production of hydrogen peroxide in Antarctic waters, Deep Sea Res., Pt 1-Oceanog. Res. Pap., 2000, 47, 1077–1099.

    Article  CAS  Google Scholar 

  98. J. V. Goldstone, B. M. Voelker Chemistry of superoxide radical in seawater: CDOM associated sink of superoxide in coastal waters, Environ. Sci. Technol., 2000, 34, 1043–1048.

    Article  CAS  Google Scholar 

  99. J. V. Goldstone, M. J. Pullin, S. Bertilsson, B. M. Voelker Reactions of hydroxyl radical with humic substances: Bleaching, mineralization, and production of bioavailable carbon substrates, Environ. Sci. Technol., 2002, 36, 364–372.

    Article  CAS  PubMed  Google Scholar 

  100. B. M. Voelker, D. L. Sedlak, O. C. Zafiriou Chemistry of superoxide radicals (O2-) in seawater: Reactions with organic Cu complexes, Environ. Sci. Technol., 2000, 34, 1036–1042.

    Article  CAS  Google Scholar 

  101. J. G. Qian, D. J. Kieber Photochemical production of the hydroxyl radical in Antarctic water Deep-Sea Res. Part 1, Oceanogr. Res. Pap., 2001, 48, 741–759.

    Article  CAS  Google Scholar 

  102. T. E. Thomas-Smith, N. V. Blough Photoproduction of hydrated electron from constituents of natural waters, Environ. Sci. Technol., 2001, 35, 2721–2726.

    Article  CAS  PubMed  Google Scholar 

  103. R. J. Kieber, W. J. Cooper, J. D. Willey, G. B. Avery Hydrogen peroxide at the Bermuda Atlantic Time Series Station. Part 1: Temporal variability of atmospheric hydrogen peroxide an its influence on seawater concentrations., J. Atmos. Chem., 2001, 39, 1–13.

    Article  CAS  Google Scholar 

  104. R. J. Kieber, K. Williams, J. D. Willey, S. Skrabal, G. B. Avery Iron speciation in coastal rainwater:concentration and deposition to seawater, Mar. Chem., 2001, 73, 83–95.

    Article  CAS  Google Scholar 

  105. L. Emmenegger, R. Schwarzenbach, L. Sigg, B. Sulzberger Light-induced redox cycling of iron in circumneutral lakes, Limnol. Oceanogr., 2000, 46, 49–61.

    Article  Google Scholar 

  106. W. Ludwig The age of river carbon, Nature, 2001, 409, 466.

    Article  CAS  PubMed  Google Scholar 

  107. W. L. Miller, M. A. Moran, W. M. Sheldon, R. G. Zepp, S. Opsahl Determination of apparent quantum yield spectra for the formation of biologically labile photoproducts, Limnol. Oceanogr., 2002, 47, 343–352.

    Article  CAS  Google Scholar 

  108. D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, M. Lorenzi-Kayser Global distribution and dynamics of colored dissolved and detrital organic materials, J. Geophys. Res., 2002, 107, in press.

  109. N. B. Nelson and D. A. Siegel, in Biogeochemistry of Marine Dissolved Organic Matter, eds. D.A. Hansell and C.A. Carlson, Academic Press, 2002.

  110. N. B. Nelson, D. A. Siegel, A. F. Michaels Seasonal dynamics of colored dissolved organic matter in the Sargasso Sea (Part I), Deep Sea Res., 1998, 45, 931–957.

    Article  CAS  Google Scholar 

  111. A. Vodacek, N. V. Blough, M. D. DeGrandpre, E. T. Peltzer, R. K. Nelson Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidation, Limnol. Oceanogr., 1997, 42, 674–686.

    Article  CAS  Google Scholar 

  112. C. E. Williamson, R. S. Stemberger, D. P. Morris, T. M. Frost, S. G. Paulsen Ultraviolet radiation in North American lakes: Attenuation estimates from DOC measurements and implications for plankton communities, Limnol. Oceanogr., 1996, 41, 1024–1034.

    Article  CAS  Google Scholar 

  113. D. P. Morris, H. Zagarese, C. E. Williamson, E. G. Balseiro, B. R. Hargreaves, B. Modenutti, R. Moeller, C. Queimalinos The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon, Limnol. Oceanogr., 1995, 40, 1381–1391.

    Article  CAS  Google Scholar 

  114. W. F. Donahue, D. W. Schindler, S. J. Page, M. P. Stainton Acid induced changes in DOC quality in an experimental whole-lake manipulation, Environ. Sci. Technol., 1998, 32, 2954–2960.

    Article  CAS  Google Scholar 

  115. R. F. Whitehead, S. d. Mora, S. Demers, M. Gosselin, P. Monfort, B. Mostajir Interactions of ultraviolet-B radiation, mixing, and biological activity on photobleaching of natural chromophoric dissolved organic matter: A mesocosm study, Limnol. Oceanogr., 2000, 45, 278–291.

    Article  CAS  Google Scholar 

  116. C. L. Osburn, H. E. Zagarese, D. P. Morris, B. R. Hargreaves, W. E. Cravero Calculation of spectral weighting functions for the solar photobleaching of chromophoric dissolved organic matter in temperate lakes, Limnol. Oceanogr., 2001, 46, 1455–1467.

    Article  CAS  Google Scholar 

  117. R. Del Vecchio and N. V. Blough, Photobleaching of chromophoric dissolved organic matter in natural waters: Kinetics and modeling, Mar. Chem., 2003, in press.

    Google Scholar 

  118. I. Reche, M. L. Pace, J. J. Cole Relationship of trophic and chemical conditions to photobleaching of dissolved organic matter in lake ecosystems, Biogeochem., 1999, 44, 259–280.

    Google Scholar 

  119. J. A. Fuhrman, D. G. Capone Nifty nanoplanton, Nature, 2001 593–594.

    Google Scholar 

  120. J. P. Zehr, J. B. Waterbury, P. J. Turner, J. P. Montoya, E. Omoregie, G. F. Steward, A. Hansen, D. M. Karl Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean, Nature, 2001, 412, 635–638.

    Article  CAS  PubMed  Google Scholar 

  121. I. Berman-Frank, J. T. Cullen, Y. Shaked, R. M. Sherrell, P. G. Falkowski Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium, Limnol. Oceanogr., 2001, 46, 1249–1260.

    Article  CAS  Google Scholar 

  122. J. M. Lenes, B. P. Darrow, C. Cattrall, C. A. Heil, M. Callahan, G. A. Vargo, R. H. Byrne, J. M. Prospero, D. E. Bates, K. A. Fanning, J. J. Walsh Iron fertilization and the Trichodesmium response on the West Florida shelf, Limnol. Oceanogr., 2001, 46, 1261–1277.

    Article  CAS  Google Scholar 

  123. K. L. Bushaw-Newton, M. A. Moran Photochemical formation of biologically-available nitrogen from dissolved humic substances in coastal marine systems, Aquat. Microb. Ecol., 1999, 18, 185–292.

    Article  Google Scholar 

  124. W. W. Wang, M. A. Tarr, T. S. Bianchi, E. Engelhaupt Ammonium photoproduction from aquatic humic, colloidal matter, Aquat. Geochem., 2000, 6, 275–292.

    Article  CAS  Google Scholar 

  125. D. J. Koopmans, D. A. Bronk Photochemical production of inorganic nitrogen from dissolved organic nitrogen in waters of two estuaries and adjacent surficial groundwaters, Aquat. Microb. Ecol., 26, 295–304.

  126. M. J. Boavida, R. G. Wetzel Inhibition of phosphatase activity by dissolved humic substances and hydrolytic reactivation by natural ultraviolet light., Freshwater Biol., 1998, 40, 285–293.

    Article  CAS  Google Scholar 

  127. E. M. Espeland R. G. Wetzel Complexation, stabilization, and UV photolysis of extracellular and surface-bound glucosidase and alkaline phosphatase: Implications for biofilm microbiota, Microb. Ecol., 2001, 42, 572–585.

    Article  CAS  PubMed  Google Scholar 

  128. D. J. Erickson, III, R. G. Zepp, E. Atlas Ozone depletion and the air-sea exchange of greenhouse and chemically reactive trace gases, Chemosphere-Global Change Science, 2000, 2, 137–149.

    Article  CAS  Google Scholar 

  129. D. J. Erickson III, and J. L. Hernandez, in American Geophysical Union Monograph: Gas Transfer at Water Surfaces eds. M.A. Donelan, W.M. Drennan, E.S. Saltzman and R. Wanninkhof, 2002, pp. 312–317.

  130. O. C. Zafiriou, S. A. Andrews and W. Wang, Concordant estimates of oceanic carbon monoxide source and sink processes in the Pacific yield a balanced global “blue-water” CO budget, Global Biogeochem. Cycles, in press.

  131. W. G. Sunda, D. J. Kieber, R. P. Kiene, S. A. Huntsman An antioxidant function for DMSP and DMS in marine algae, Nature, 2002, 418, 317–320.

    Article  CAS  PubMed  Google Scholar 

  132. M. A. J. Curran, G. B. Jones Dimethyl sulfide in the Southern Ocean: Seasonality and flux, J. Geophys. Res., 2000, 105, 20–459.

    Google Scholar 

  133. R. Simó, C. Pedrós-Alió Role of vertical mixing in controlling the oceanic production of dimethyl sulfide, Nature, 1999, 402, 396–398.

    Article  Google Scholar 

  134. D. A. Toole, D. J. Kieber, R. P. Kiene, D. A. Siegel The quantum yield of dimethylsulfide (DMS) photooxidation in the Sargasso Sea, EOS Trans., American Geophysical Union, 2002, 83.

  135. D. Slezak, A. Brugger, G. J. Herndl Impact of solar radiation on the biological removal of dimethylsuloniopropionate and dimethylsulfide in marine surface waters, Aquat. Microb. Ecol., 2001, 25, 87–97.

    Article  Google Scholar 

  136. A. D. Hatton Influence of photochemistry on the marine biogeochemical cycle of dimethylsulphide in the northern North Sea, Deep Sea Res., 2002, 49, 3039–3052.

    Article  CAS  Google Scholar 

  137. D. Preiswerk, R. G. Najjar A global, open-ocean model of carbonyl sulfide and its air-sea flux, Global Biogeochem. Cycles, 2000, 14, 585–598.

    Article  CAS  Google Scholar 

  138. D. W. Schindler, J. P. Curtis, B. R. Parker, M. P. Stainton Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes, Nature, 1996, 379, 705–708.

    Article  CAS  Google Scholar 

  139. D. A. Siegel, A. F. Michaels Quantification of non-algal light attenuation in the Sargasso Sea: Implications for biogeochemistry and remote sensing, Deep Sea Res., 1996, 43, 321–346.

    Article  CAS  Google Scholar 

  140. M. D. DeGrandpre, A. Vodacek, R. Nelson, E. J. Burce, N. V. Blough Seasonal seawater optical properties of the U.S. Middle Atlantic Bight., J. Geophys. Res., 1996, 101, 22727–22736.

    Article  CAS  Google Scholar 

  141. I. Laurion, M. Ventura, J. Catalan, R. Psenner, R. Sommaruga Attenuation of ultraviolet radiation in mountain lakes: Factors controlling the among- and within-lake variability, Limnol. Oceanogr., 2000, 45, 1274–1288.

    Article  Google Scholar 

  142. D. W. Schindler Widespread effects of climatic warming on freshwater ecosystems in North America, Hydrol. Process., 1997, 11, 1043–1067.

    Article  Google Scholar 

  143. D. P. Morris, B. R. Hargreaves The role of photochemical degradation of dissolved organic matter in regulating UV transparency of three lakes on the Pocono Plateau, Limnol. Oceanogr., 1997, 42, 239–249.

    Article  CAS  Google Scholar 

  144. P. Falkowski, R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Högberg, S. Linder, F. T. Mackenzie, B. I. Moore, T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, W. Steffen The global carbon cycle: A test of our knowledge of Earth as a system, Science, 2000, 290, 291–296.

    Article  CAS  PubMed  Google Scholar 

  145. P. J. Neale, E. W. Helbling and H. Zagarese, in UV effects in aquatic organisms and ecosystems eds. E.W. Helbling and H. Zagarese, Royal Society of Chemistry, Cambridge, UK, 2002, in press.

  146. P. R. Leavitt, R. D. Vinebrooke, D. B. Donald, J. P. Smol, D. W. Schindler Past ultraviolet radiation environments in lakes derived from fossil pigments, Nature, 1997, 388, 457–459.

    Article  CAS  Google Scholar 

  147. R. Pienitz, W. F. Vincent Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes, Nature, 2000, 404, 484–487.

    Article  CAS  PubMed  Google Scholar 

  148. M. V. Moore, M. L. Pace, J. R. Mather, P. S. Murdoch, R. W. Howarth, C. L. Folt, C. Y. Chen, H. F. Hemond, P. A. Flebbe, C. T. Driscoll Potential effects of climate change on freshwater ecosystems of the New England/Mid-Atlantic region, Hydrol. Process., 1997, 11, 925–947.

    Article  Google Scholar 

  149. P. J. Mulholland G. R. Best, C. C. Coutant, G. M. Hornberger, J. L. Meyer, P. J. Robinson, J. R. Stenberg, R. E. Turner, F. Veraherrera, R. G. Wetzel Effects of climate change on freshwater ecosystems of the Southeastern United States and the Gulf Coast of Mexico, Hydrol. Process., 1997, 11, 949–970.

    Article  Google Scholar 

  150. G. T. Ankley, S. A. Collyard, P. D. Monson, P. A. Kosian Influence of ultraviolet light on the toxicity of sediments contaminated with polycyclic aromatic hydrocarbons., Environ. Toxicol. Chem., 1994, 13, 1791–1796.

    Article  CAS  Google Scholar 

  151. G. T. Ankley, R. J. Erickson, G. L. Phipps, V. R. Mattson, P. A. Kosian, B. R. Sheedy, J. S. Cox Effects of light intensity on the phototoxicity of fluoranthene to a benthic macroinvertebrate., Environ. Sci. Technol., 1995, 29, 2828–2833.

    Article  CAS  PubMed  Google Scholar 

  152. J. A. E. Gibson, W. F. Vincent, B. Nieke, R. Pienitz Control of biological exposure to UV radiation in the Arctic Ocean: Comparison of the roles of ozone and riverine dissolved organic matter, Arctic, 2000, 53, 372–382.

    Article  Google Scholar 

  153. R. J. Kieber, B. Peake, J. D. Willey, B. Jacobs Iron speciation and hydrogen peroxide concentration in New Zealand rainwater., Atmos. Environ., 2001, 35, 6041–6048.

    Article  CAS  Google Scholar 

  154. W. G. Sunda, in Role Of Non-Living Organic Matter in the Earth’s Carbon Cycle eds. R.G. Zepp and C. Sonntag, Wiley, New York, 1994, pp. 191–207.

  155. J. Butler Atmospheric chemistry-Better budgets for methyl halides?, Nature, 2000, 403, 260–261.

    Article  CAS  PubMed  Google Scholar 

  156. R. M. Moore, O. C. Zafiriou Photochemical production of methyl iodide in seawater, J. Geophys. Res., 1994, 99D, 16415–16420.

    Article  Google Scholar 

  157. R. M. Moore, R. Tokarczyk, V. K. Tait, M. Poulin and C. Green, in Naturally-Produced Organohalogens eds. A. Grimvall and W. B. De Leer, Kluwer Academic Publishers, 1995.

  158. R. Wever, G. M. Tromp, B. E. Krenn, A. Marjani Vantol, Brominating activity of the seaweed Ascophyllum nodosum, Environ. Sci. Technol., 1991, 25, 446–449.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is published as part of the United Nations Environmental Programme: Environmental effects of ozone depletion and its interactions with climate change: 2002 assessment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zepp, R.G., Callaghan, T.V. & Erickson, D.J. Interactive effects of ozone depletion and climate change on biogeochemical cycles. Photochem Photobiol Sci 2, 51–61 (2003). https://doi.org/10.1039/b211154n

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b211154n

Navigation