Log in

The kinase activity of c-Abl but not v-Abl is potentiated by direct interaction with RFXI, a protein that binds the enhancers of several viruses and cell-cycle regulated genes

  • Original Paper
  • Published:
Oncogene Submit manuscript

Abstract

c-Abl, the non-receptor tyrosine kinase is associated with EP, a DNA element found in promoters/enhancers of different viruses and cell-cycle regulated genes. EP-DNA binds RFXI, a member of a novel family of DNA-binding proteins that is conserved through evolution and in yeast, it controls differentiation and exit from the mitotic cycle to G0. EP-associated proteins are preferentially tyrosine phosphorylated and the associated c-Abl has strong tyrosine kinase activity. Here we investigated the molecular mechanism underlying this c-Abl kinase activity. We show that RFXI and c-Abl are in direct interaction, in vitro and in cell extracts, through the RFXI proline rich (PxxP) motif and the c-Abl SH3 domain. Remarkably, this interaction significantly potentiates c-Abl but not v-Abl auto-kinase activity. Collectively, we describe a novel mechanism of c-Abl recruitment to a defined DNA-cis element with its concomitant kinase activation. We propose that this mechanism may act to regulate cell-cycle control genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agami, R., Shaul, Y. The kinase activity of c-Abl but not v-Abl is potentiated by direct interaction with RFXI, a protein that binds the enhancers of several viruses and cell-cycle regulated genes. Oncogene 16, 1779–1788 (1998). https://doi.org/10.1038/sj.onc.1201708

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1201708

  • Springer Nature Limited

Keywords

This article is cited by

Navigation