Log in

Changes in statistical learning across development

  • Review Article
  • Published:

From Nature Reviews Psychology

View current issue Sign up to alerts

Abstract

Statistical learning enables learners to extract the environmental regularities necessary to piece together the structure of their worlds. The capacity for statistical learning and its properties are likely to change across development from infancy to adulthood. Acknowledging this developmental change has broad implications for understanding the cognitive architecture of statistical learning and why children excel in certain learning situations relative to adults. In this Review, we first synthesize empirical work on the development of statistical learning, which indicates that it improves with development only for certain forms of input. Taking inspiration from related cognitive and neural findings, we then consider developmental changes in the properties of statistical learning. Infants and young children might have a broader and less-directed curriculum for learning and represent the outcomes of learning differently from older children and adults. This synthesis offers insight into how developmental changes in statistical learning from infancy through adulthood might fundamentally alter how children interact with, learn about, and remember their experiences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1: Statistical learning in the real world.
Fig. 2: Statistical learning paradigms.
Fig. 3: Neural underpinnings of statistical learning.
Fig. 4: The development of attention and implicit learning processes.
Fig. 5: Greater forgetting can lead to more general representations.
Fig. 6: How statistical representations can change across development.

Similar content being viewed by others

References

  1. Saffran, J. R., Aslin, R. N. & Newport, E. L. Statistical learning by 8-month-old infants. Science 274, 1926–1928 (1996).

    Article  PubMed  Google Scholar 

  2. Maye, J., Werker, J. F. & Gerken, L. A. Infant sensitivity to distributional information can affect phonetic discrimination. Cognition 82, 101–111 (2002).

    Article  Google Scholar 

  3. Gómez, R. L. Variability and detection of invariant structure. Psychol. Sci. 13, 431–436 (2002).

    Article  PubMed  Google Scholar 

  4. Pelucchi, B., Hay, J. F. & Saffran, J. R. Statistical learning in a natural language by 8-month-old infants. Child Dev. 80, 674–685 (2009).

    Article  PubMed  Google Scholar 

  5. Marcus, G. F. et al. Rule learning by seven-month-old infants. Science 283, 77–81 (1999).

    Article  PubMed  Google Scholar 

  6. Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B. & Botvinick, M. M. Neural representations of events arise from temporal community structure. Nat. Neurosci. 16, 486–492 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jung, Y., Walther, D. B. & Finn, A. S. Children automatically abstract categorical regularities during statistical learning. Dev. Sci. 24, 1–12 (2020).

    Google Scholar 

  8. Fiser, J. & Aslin, R. N. Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychol. Sci. 12, 499–504 (2001).

    Article  PubMed  Google Scholar 

  9. Fiser, J. & Aslin, R. N. Statistical learning of new visual feature combinations by infants. Proc. Natl Acad. Sci. USA 99, 15822–15826 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Turk-Browne, N. B., Jungé, J. & Scholl, B. J. The automaticity of visual statistical learning. J. Exp. Psychol. Gen. 134, 552–564 (2005).

    Article  PubMed  Google Scholar 

  11. Turk-Browne, N. B., Isola, P. J., Scholl, B. J. & Treat, T. A. Multidimensional visual statistical learning. J. Exp. Psychol. Learn. Mem. Cogn. 34, 399–407 (2008).

    Article  PubMed  Google Scholar 

  12. Campbell, K. L., Zimerman, S., Healey, M., Lee, M. & Hasher, L. Age differences in visual statistical learning. Psychol. Aging 27, 650–656 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Teinonen, T., Fellman, V., Näätänen, R., Alku, P. & Huotilainen, M. Statistical language learning in neonates revealed by event-related brain potentials. BMC Neurosci. 10, 21 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Choi, D., Batterink, L. J., Black, A. K., Paller, K. A. & Werker, J. F. Preverbal infants discover statistical word patterns at similar rates as adults: evidence from neural entrainment. Psychol. Sci. 31, 1161–1173 (2020).

    Article  PubMed  Google Scholar 

  15. Smith, L. B., Jayaraman, S., Clerkin, E. & Yu, C. The develo** infant creates a curriculum for statistical learning. Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2018.02.004 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Newport, E. L. Maturational constraints on language learning. Cogn. Sci. 14, 11–28 (1990).

    Article  Google Scholar 

  17. Adamson, R. E. Functional fixedness as related to problem solving: a repetition of three experiments. J. Exp. Psychol. 44, 288–291 (1952).

    Article  PubMed  Google Scholar 

  18. Lucas, C. G., Bridgers, S., Griffiths, T. L. & Gopnik, A. When children are better (or at least more open-minded) learners than adults: developmental differences in learning the forms of causal relationships. Cognition 131, 284–299 (2014).

    Article  PubMed  Google Scholar 

  19. Aslin, R. N. Statistical learning: a powerful mechanism that operates by mere exposure. Wiley Interdiscip. Rev. Cogn. Sci. 8, 1373 (2017).

    Article  Google Scholar 

  20. Conway, C. M. How does the brain learn environmental structure? Ten core principles for understanding the neurocognitive mechanisms of statistical learning. Neurosci. Biobehav. Rev. 112, 279–299 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Arciuli, J. The multi-component nature of statistical learning. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160058 (2017).

    Article  Google Scholar 

  22. Gualtieri, S. & Finn, A. S. The sweet spot: when children’s develo** abilities, brains, and knowledge make them better learners than adults. Perspect. Psychol. Sci. 17, 1322–1338 (2021).

    Article  Google Scholar 

  23. Raviv, L. & Arnon, I. The developmental trajectory of children’s auditory and visual statistical learning abilities: modality-based differences in the effect of age. Dev. Sci. 21, 12593 (2018).

    Article  Google Scholar 

  24. Saffran, J. R., Newport, E. L., Aslin, R. N., Tunick, R. A. & Barrueco, S. Incidental language learning: listening (and learning) out of the corner of your ear. Psychol. Sci. 8, 101–105 (1997).

    Article  Google Scholar 

  25. Krogh, L., Vlach, H. A. & Johnson, S. P. Statistical learning across development: flexible yet constrained. Front. Psychol. 3, 1–11 (2013).

    Article  Google Scholar 

  26. Saffran, J. R. & Kirkham, N. Z. Infant statistical learning. Annu. Rev. Psychol. 69, 181–203 (2018).

    Article  PubMed  Google Scholar 

  27. Saffran, J. R. Statistical language learning in infancy. Child. Dev. Perspect. 14, 49–54 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kirkham, N. Z., Slemmer, J. A. & Johnson, S. P. Visual statistical learning in infancy: evidence for a domain general learning mechanism. Cognition 83, 4–5 (2002).

    Article  Google Scholar 

  29. Werker, J. F. & Tees, R. C. Cross-language speech perception: evidence for perceptual reorganization during the first year of life. Infant. Behav. Dev. 7, 49–63 (1984).

    Article  Google Scholar 

  30. Kudo, N., Nonaka, Y., Mizuno, N., Mizuno, K. & Okanoya, K. On-line statistical segmentation of a non-speech auditory stream in neonates as demonstrated by event-related brain potentials. Dev. Sci. 14, 1100–1106 (2011).

    Article  PubMed  Google Scholar 

  31. Schlichting, M. L., Guarino, K. F., Schapiro, A. C., Turk-Browne, N. B. & Preston, A. R. Hippocampal stucture predicts statistical learning and associative inference abilities during development. J. Cogn. Neurosci. 29, 37–51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Forest, T. A., Lichtenfeld, A., Alvarez, B. & Finn, A. S. Superior learning in synesthetes: consistent grapheme–color associations facilitate statistical learning. Cognition 186, 72–81 (2019).

    Article  PubMed  Google Scholar 

  33. Jacoby, L. L. A process dissociation framework: separating automatic from intentional uses of memory. J. Mem. Lang. 30, 513–541 (1991).

    Article  Google Scholar 

  34. Batterink, L. J., Reber, P. J., Neville, H. J. & Paller, K. A. Implicit and explicit contributions to statistical learning. J. Mem. Lang. 83, 62–78 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Siegelman, N., Bogaerts, L., Armstrong, B. C. & Frost, R. What exactly is learned in visual statistical learning? Insights from Bayesian modeling. Cognition 192, 104002 (2019).

    Article  PubMed  Google Scholar 

  36. van Witteloostuijn, M., Lammertink, I., Boersma, P., Wijnen, F. & Rispens, J. Assessing visual statistical learning in early-school-aged children: the usefulness of an online reaction time measure. Front. Psychol. 10, 1–16 (2019).

    Article  Google Scholar 

  37. Amso, D. & Davidow, J. The development of implicit learning from infancy to adulthood: item frequencies, relations, and cognitive flexibility. Dev. Psychobiol. 54, 664–673 (2012).

    Article  PubMed  Google Scholar 

  38. Kabdebon, C., Pena, M., Buiatti, M. & Dehaene-Lambertz, G. Electrophysiological evidence of statistical learning of long-distance dependencies in 8-month-old preterm and full-term infants. Brain Lang. 148, 25–36 (2015).

    Article  PubMed  Google Scholar 

  39. Fló, A., Benjamin, L., Palu, M. & Dehaene-Lambertz, G. Slee** neonates track transitional probabilities in speech but only retain the first syllable of words. Sci. Rep. https://doi.org/10.1101/2021.07.16.452631 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Batterink, L. J. & Paller, K. A. Online neural monitoring of statistical learning. Cortex 90, 31–45 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Henin, S. et al. Learning hierarchical sequence representations across human cortex and hippocampus. Sci. Adv. 7, 1–13 (2021).

    Article  Google Scholar 

  42. Fló, A. et al. Newborns are sensitive to multiple cues for word segmentation in continuous speech. Dev. Sci. 22, e12802 (2019).

    Article  PubMed  Google Scholar 

  43. Arciuli, J. & Simpson, I. C. Statistical learning in typically develo** children: the role of age and speed of stimulus presentation. Dev. Sci. 3, 464–473 (2011).

    Article  Google Scholar 

  44. Shufaniya, A. & Arnon, I. Statistical learning is not age-invariant during childhood: performance improves with age across modality. Cogn. Sci. 42, 3100–3115 (2018).

    Article  PubMed  Google Scholar 

  45. Finn, A. S., Kharitonova, M., Holtby, N. & Sheridan, M. A. Prefrontal and hippocampal structure predict statistical learning ability in early childhood. J. Cogn. Neurosci. 31, 126–137 (2019).

    Article  PubMed  Google Scholar 

  46. Ramscar, M. & Gitcho, N. Developmental change and the nature of learning in childhood. Trends Cogn. Sci. 11, 274–279 (2007).

    Article  PubMed  Google Scholar 

  47. Turk-Browne, N. B., Scholl, B. J., Chun, M. M. & Johnson, M. K. Neural evidence of statistical learning: efficient detection of visual regularities without awareness. J. Cogn. Neurosci. 21, 1934–1945 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Karuza, E. A. et al. The neural correlates of statistical learning in a word segmentation task: an fMRI study. Brain Lang. 127, 46–54 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. McNealy, K., Mazziotta, J. C. & Dapretto, M. Cracking the language code: neural mechanisms underlying speech parsing. J. Neurosci. 26, 7629–7639 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  50. McNealy, K., Mazziotta, J. C. & Dapretto, M. The neural basis of speech parsing in children and adults. Dev. Sci. 13, 385–406 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schapiro, A. C., Turk-Browne, N. B., Norman, K. A. & Botvinick, M. M. Statistical learning of temporal community structure in the hippocampus. Hippocampus 26, 3–8 (2016).

    Article  PubMed  Google Scholar 

  52. Ellis, C. T. et al. Evidence of hippocampal learning in human infants. Curr. Biol. 31, 3358–3364.e4 (2021).

    Article  PubMed  Google Scholar 

  53. Schlichting, M. L., Mumford, J. A. & Preston, A. R. Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nat. Commun. 6, 1–10 (2015).

    Article  Google Scholar 

  54. Mack, M. L., Love, B. C. & Preston, A. R. Dynamic updating of hippocampal object representations reflects new conceptual knowledge. Proc. Natl Acad. Sci. USA 113, 13203–13208 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bowman, C. R. & Zeithamova, D. Abstract memory representations in the ventromedial prefrontal cortex and hippocampus support concept generalization. J. Neurosci. 38, 2605–2614 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gilboa, A. & Marlatte, H. Neurobiology of schemas and schema-mediated memory. Trends Cogn. Sci. 21, 618–631 (2017).

    Article  PubMed  Google Scholar 

  57. Preston, A. R. & Eichenbaum, H. Interplay of hippocampus and prefrontal cortex in memory. Curr. Biol. 23, R764–R773 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gabrieli, J. D. E. Cognitive neuroscience of human memory. Annu. Rev. Psychol. 49, 87–115 (1998).

    Article  PubMed  Google Scholar 

  59. Keane, M. M., Gabrieli, J. D. E., Mapstone, H. C., Johnson, K. A. & Corkin, S. Double dissociation of memory capacities after bilateral occipital-lobe or medial temporal-lobe lesions. Brain 118, 1129–1148 (1995).

    Article  PubMed  Google Scholar 

  60. Fleischman, D. A. et al. Conceptual priming in perceptual identification for patients with Alzheimer’s disease and a patient with right occipital lobectomy. Neuropsychology 9, 187–197 (1995).

    Article  Google Scholar 

  61. Turk-Browne, N. B., Scholl, B. J., Johnson, M. K. & Chun, M. M. Implicit perceptual anticipation triggered by statistical learning. J. Neurosci. 30, 11177–11187 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Reber, P. J. The neural basis of implicit learning and memory: a review of neuropsychological and neuroimaging research. Neuropsychologia 51, 2026–2042 (2013).

    Article  PubMed  Google Scholar 

  63. Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn. Sci. 19, 304–313 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Willingham, D. B., Salidis, J. & Gabrieli, J. D. E. Direct comparison of neural systems mediating conscious and unconscious skill learning. J. Neurophysiol. 88, 1451–1460 (2002).

    Article  PubMed  Google Scholar 

  65. Keele, S. W., Mayr, U., Ivry, R., Hazeltine, E. & Heuer, H. The cognitive and neural architecture of sequence representation. Psychol. Rev. 110, 316–339 (2003).

    Article  PubMed  Google Scholar 

  66. Foerde, K. & Shohamy, D. The role of the basal ganglia in learning and memory: insight from Parkinson’s disease. Neurobiol. Learn. Mem. 96, 624–636 (2013).

    Article  Google Scholar 

  67. Frank, M. J., Seeberger, L. C. & Reilly, R. C. O. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306, 1940–1944 (2004).

    Article  PubMed  Google Scholar 

  68. Frank, M. J., O’Reilly, R. C. & Curran, T. When memory fails, intuition reigns: midazolam enhances implicit inference in humans. Psychol. Sci. 17, 700–707 (2006).

    Article  PubMed  Google Scholar 

  69. Chatham, C. H., Frank, M. J. & Badre, D. Corticostriatal output gating during selection from working memory. Neuron 81, 930–942 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Awh, E. & Vogel, E. K. The bouncer in the brain. Nat. Neurosci. 11, 5–6 (2008).

    Article  PubMed  Google Scholar 

  71. Mcnab, F. & Klingberg, T. Prefrontal cortex and basal ganglia control access to working memory. Nat. Neurosci. 11, 103–107 (2008).

    Article  PubMed  Google Scholar 

  72. Darki, F. & Klingberg, T. The role of fronto-parietal and fronto-striatal networks in the development of working memory: a longitudinal study. Cereb. Cortex 25, 1587–1595 (2015).

    Article  PubMed  Google Scholar 

  73. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neuropsychiatry Clin. Neurosci. 20, 11–21 (1957).

    Google Scholar 

  74. Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M. & Turk-Browne, N. B. The necessity of the medial temporal lobe for statistical learning. J. Cogn. Neurosci. 26, 1736–1747 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schapiro, A. C., Kustner, L. V. & Turk-Browne, N. B. Sha** of object representations in the human medial temporal lobe based on temporal regularities. Curr. Biol. 22, 1622–1627 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Covington, N. V., Brown-Schmidt, S. & Duff, M. C. The necessity of the hippocampus for statistical learning. J. Cogn. Neurosci. 30, 1–19 (2018).

    Article  Google Scholar 

  77. Shohamy, D. & Turk-Browne, N. B. Mechanisms for widespread hippocampal involvement in cognition. J. Exp. Psychol. Gen. 142, 1159–1170 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M. & Norman, K. A. Complementary learning systems within the hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160049 (2017).

    Article  Google Scholar 

  79. Eichenbaum, H. & Cohen, N. J. Conditioning to Conscious Recollection: Memory Systems of the Brain (Oxford Academic, 2001).

  80. Lenroot, R. K. & Giedd, J. N. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci. Biobehav. Rev. 30, 718–729 (2006).

    Article  PubMed  Google Scholar 

  81. Toro, J. M., Sinnett, S. & Soto-Faraco, S. Speech segmentation by statistical learning depends on attention. Cognition 97, 25–34 (2005).

    Article  Google Scholar 

  82. Forest, T. A. & Finn, A. S. Attention selectively boosts learning of statistical structure. Mind Model. 1674–1679 (2018).

  83. Batterink, L. J. & Paller, K. A. Statistical learning of speech regularities can occur outside the focus of attention. Cortex 115, 56–71 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Plude, D. J., Enns, J. T. & Brodeur, D. The development of selective attention: a life-span overview. Acta Psychol. 86, 227–272 (1994).

    Article  Google Scholar 

  85. Fortenbaugh, F. C. et al. Sustained attention across the life span in a sample of 10,000: dissociating ability and strategy. Psychol. Sci. 26, 1497–1510 (2015).

    Article  PubMed  Google Scholar 

  86. Hanania, R. & Smith, L. B. Selective attention and attention switching: toward a unified developmental approach. Dev. Sci. 13, 622–635 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Plebanek, D. J. & Sloutsky, V. M. Costs of selective attention: when children notice what adults miss. Psychol. Sci. 28, 723–732 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Deng, W. S. & Sloutsky, V. M. Selective attention, diffused attention, and the development of categorization. Cogn. Psychol. 91, 24–62 (2016).

    Article  PubMed  Google Scholar 

  89. Drummey, A. B. & Newcombe, N. Remembering versus knowing the past: children’s explicit and implicit memories for pictures. J. Exp. Child. Psychol. 59, 549–565 (1995).

    Article  PubMed  Google Scholar 

  90. Carroll, M., Byrne, B. & Kirsner, K. Autobiographical memory and perceptual learning: a developmental study using picture recognition, naming latency, and perceptual identification. Mem. Cognit. 13, 273–279 (1985).

    Article  PubMed  Google Scholar 

  91. Thomas, K. M. & Nelson, C. A. Serial reaction time learning in preschool- and school-age children. J. Exp. Child. Psychol. 79, 364–387 (2001).

    Article  PubMed  Google Scholar 

  92. Thomas, K. M. et al. Evidence of developmental differences in implicit sequence learning: an fMRI study of children and adults. J. Cogn. Neurosci. 16, 1339–1351 (2004).

    Article  PubMed  Google Scholar 

  93. Janacsek, K., Fiser, J. & Nemeth, D. The best time to acquire new skills: age-related differences in implicit sequence learning across the human lifespan. Dev. Sci. 15, 496–505 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gómez, R. L. & Edgin, J. O. The extended trajectory of hippocampal development: implications for early memory development and disorder. Dev. Cogn. Neurosci. 18, 57–69 (2016).

    Article  PubMed  Google Scholar 

  95. Olson, I. R. & Newcombe, N. S. in Wiley Handbook on Child Development (eds Bauer, P. J. & Fivush, R.) 285–308 (Wiley-Blackwell, 2014).

  96. Ghetti, S. & Bunge, S. A. Neural changes underlying the development of episodic memory during middle childhood. Dev. Cogn. Neurosci. 4, 1–29 (2012).

    Google Scholar 

  97. Ghetti, S. & Fandakova, Y. Neural development of memory and metamemory in childhood and adolescence: toward an integrative model of the development of episodic recollection. Annu. Rev. Dev. Psychol. 2, 365–388 (2020).

    Article  Google Scholar 

  98. Smith, M. A., Ghazizadeh, A. & Shadmehr, R. Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 4, e179 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  99. McDougle, S. D., Bond, K. M. & Taylor, J. A. Explicit and implicit processes constitute the fast and slow processes of sensorimotor learning. J. Neurosci. 35, 9568 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Goshen-Gottstein, Y. & Kempinsky, H. Probing memory with conceptual cues at multiple retention intervals: a comparison of forgetting rates on implicit and explicit tests. Psychon. Bull. Rev. 8, 139–146 (2001).

    Article  PubMed  Google Scholar 

  101. Graf, P., Squire, L. R. & Mandler, G. The information that amnesic patients do not forget. J. Exp. Psychol. Learn. Mem. Cogn. 10, 164–178 (1984).

    Article  PubMed  Google Scholar 

  102. Rappold, V. A. & Hashtroudi, S. Does organization improve priming? J. Exp. Psychol. Learn. Mem. Cogn. 17, 103–114 (1991).

    Article  PubMed  Google Scholar 

  103. Clerkin, E. M., Hart, E., Rehg, J. M., Yu, C. & Smith, L. B. Real-world visual statistics and infants’ first-learned object names. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160055 (2017).

    Article  Google Scholar 

  104. Smith, L. B., Yu, C., Yoshida, H. & Fausey, C. M. Contributions of head-mounted cameras to studying the visual environments of infants and young children. J. Cogn. Dev. 16, 407 (2015).

    Article  PubMed  Google Scholar 

  105. Zhao, J. & Luo, Y. Statistical regularities guide the spatial scale of attention. Atten. Percept. Psychophys. 79, 24–30 (2016).

    Article  Google Scholar 

  106. Wang, B., Samara, I. & Theeuwes, J. Statistical regularities bias overt attention. Atten. Percept. Psychophys. 81, 1812–1821 (2019).

    Article  Google Scholar 

  107. Finn, A. S. & Hudson Kam, C. L. The curse of knowledge: first language knowledge impairs adult learners’ use of novel statistics for word segmentation. Cognition 108, 477–499 (2008).

    Article  PubMed  Google Scholar 

  108. Toro, J. M., Pons, F., Bion, R. A. H. & Sebastián-Gallés, N. The contribution of language-specific knowledge in the selection of statistically-coherent word candidates. J. Mem. Lang. 64, 171–180 (2011).

    Article  Google Scholar 

  109. Itti, L. & Baldi, P. Bayesian surprise attracts human attention. Vis. Res. 49, 1295–1306 (2009).

    Article  PubMed  Google Scholar 

  110. Ranganath, C. & Rainer, G. Neural mechanisms for detecting and remembering novel events. Nat. Rev. Neurosci. 4, 193–202 (2003).

    Article  PubMed  Google Scholar 

  111. Forest, T. A., Siegelman, N. & Finn, A. S. Attention shifts to more complex locations with experience. Psychol. Sci. 33, 2059–2072 (2022).

    Article  PubMed  Google Scholar 

  112. Van Kesteren, M. T. R., Ruiter, D. J., Fernández, G. & Henson, R. N. How schema and novelty augment memory formation. Trends Neurosci. 35, 211–219 (2012).

    Article  PubMed  Google Scholar 

  113. Zettersten, M. & Saffran, J. R. Sampling to learn words: adults and children sample words that reduce referential ambiguity. Dev. Sci. https://doi.org/10.1111/desc.13064 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wade, S. & Kidd, C. The role of prior knowledge and curiosity in learning. Psychon. Bull. Rev. 26, 1377–1387 (2019).

    Article  PubMed  Google Scholar 

  115. Loewenstein, G. The psychology of curiosity: a review and reinterpretation. Psychol. Bull. 116, 75–94 (1994).

    Article  Google Scholar 

  116. Gebhart, A. L., Aslin, R. N. & Newport, E. L. Changing structures in midstream: learning along the statistical garden path. Cogn. Sci. 33, 1087–1116 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bulgarelli, F. & Weiss, D. J. Anchors aweigh: the impact of overlearning on entrenchment effects in statistical learning. J. Exp. Psychol. Learn. Mem. Cogn. 42, 1621–1631 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kóbor, A., Horváth, K., Kardos, Z., Nemeth, D. & Janacsek, K. Perceiving structure in unstructured stimuli: implicitly acquired prior knowledge impacts the processing of unpredictable transitional probabilities. Cognition 205, 104413 (2020).

    Article  PubMed  Google Scholar 

  119. Kidd, C., Piantadosi, S. T. & Aslin, R. N. The Goldilocks effect: human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS ONE 7, e36399 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kidd, C., Piantadosi, S. T. & Aslin, R. N. The Goldilocks effect in infant auditory attention. Child. Dev. 85, 1795–1804 (2014).

    PubMed  PubMed Central  Google Scholar 

  121. Cubit, L. S., Canale, R., Handsman, R., Kidd, C. & Bennetto, L. Visual attention preference for intermediate predictability in young children. Child. Dev. 92, 691–703 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Poli, F., Serino, G., Mars, R. B. & Hunnius, S. Infants tailor their attention to maximize learning. Sci. Adv. 6, 1–9 (2020).

    Article  Google Scholar 

  123. Ngo, C. T., Benear, S. L., Popal, H., Olson, I. & Newcombe, N. S. Contingency of semantic generalization on episodic specificity: variations across development. Curr. Biol. 31, 1–8 (2021).

    Article  Google Scholar 

  124. Drummey, A. B. & Newcombe, N. S. Developmental changes in source memory. Dev. Sci. 5, 502–513 (2002).

    Article  Google Scholar 

  125. Hudson, J. A., Fivush, R. & Kuebli, J. Scripts and episodes: the development of event memory. Appl. Cogn. Psychol. 6, 483–505 (1992).

    Article  Google Scholar 

  126. Saragosa-Harris, N. M. et al. Associative memory persistence in 3- to 5-year-olds. Dev. Sci. https://doi.org/10.1111/desc.13105 (2021).

    Article  PubMed  Google Scholar 

  127. Lloyd, M. E., Doydum, A. O. & Newcombe, N. S. Memory binding in early childhood: evidence for a retrieval deficit. Child. Dev. 80, 1321–1328 (2009).

    Article  PubMed  Google Scholar 

  128. Raj, V. & Bell, M. A. Cognitive processes supporting episodic memory formation in childhood: the role of source memory, binding, and executive functioning. Dev. Rev. 30, 384–402 (2010).

    Article  Google Scholar 

  129. Sluzenski, J., Newcombe, N. S. & Kovacs, S. L. Binding, relational memory, and recall of naturalistic events: a developmental perspective. J. Exp. Psychol. Learn. Mem. Cogn. 32, 89–100 (2006).

    Article  PubMed  Google Scholar 

  130. Brainerd, C. J. & Reyna, V. F. Fuzzy-trace theory and memory development. Dev. Rev. 24, 396–439 (2004).

    Article  Google Scholar 

  131. Barr, R. & Brito, N. From specificity to flexibility: early developmental changes in memory generalization. Wiley Handb. Dev. Child. Mem. https://doi.org/10.1002/9781118597705.CH20 (2014).

    Article  Google Scholar 

  132. Schlichting, M. L., Guarino, K. F., Roome, H. E. & Preston, A. R. Developmental differences in memory reactivation relate to encoding and inference in the human brain. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01206-5 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Slone, L. K. & Johnson, S. P. When learning goes beyond statistics: infants represent visual sequences in terms of chunks. Cognition 178, 92–102 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Reyna, V. F. & Brainerd, C. J. Fuzzy-trace theory: an interim synthesis. Learn. Individ. Differ. 7, 1–75 (1995).

    Article  Google Scholar 

  135. Gómez, R. L. Do infants retain the statistics of a statistical learning experience? Insights from a developmental cognitive neuroscience perspective. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160054 (2017).

    Article  Google Scholar 

  136. Eglington, L. G. & Kang, S. H. K. Interleaved presentation benefits science category learning. J. Appl. Res. Mem. Cogn. 6, 475–485 (2017).

    Article  Google Scholar 

  137. Vlach, H. A. The spacing effect in children’s generalization of knowledge: allowing children time to forget promotes their ability to learn. Child. Dev. Perspect. 8, 163–168 (2014).

    Article  Google Scholar 

  138. Howe, M. L. & Courage, M. L. Independent paths in the development of infant learning and forgetting. J. Exp. Child. Psychol. 67, 131–163 (1997).

    Article  PubMed  Google Scholar 

  139. Bhatt, R. S. & Rovee-collier, C. Infants’ forgetting of correlated attributes and object recognition. Child. Dev. 67, 172–187 (1996).

    Article  PubMed  Google Scholar 

  140. Bauer, P. J., Wenner, J. A., Dropik, P. L., Wewerka, S. S. & Howe, M. L. Parameters of remembering and forgetting in the transition from infancy to early childhood. Monogr. Soc. Res. Child Dev. 65, 1–204 (2000).

    Article  Google Scholar 

  141. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successess and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    Article  PubMed  Google Scholar 

  142. Duncan, K. D. & Schlichting, M. L. Neurobiology of learning and memory hippocampal representations as a function of time, subregion, and brain state. Neurobiol. Learn. Mem. 153, 40–56 (2018).

    Article  PubMed  Google Scholar 

  143. Lavenex, P. & Banta Lavenex, P. Building hippocampal circuits to learn and remember: insights into the development of human memory. Behav. Brain Res. 254, 8–21 (2013).

    Article  PubMed  Google Scholar 

  144. Jabès, A. & Nelson, C. A. 20 years after ‘the ontogeny of human memory: a cognitive neuroscience perspective,’ where are we? Int. J. Behav. Dev. 39, 293–303 (2015).

    Article  Google Scholar 

  145. Hayne, H., MacDonald, S. & Barr, R. Developmental changes in the specificity of memory over the second year of life. Infant. Behav. Dev. 20, 233–245 (1997).

    Article  Google Scholar 

  146. Ribordy, F., Jabès, A., Banta Lavenex, P. & Lavenex, P. Development of allocentric spatial memory abilities in children from 18 months to 5 years of age. Cogn. Psychol. 66, 1–29 (2013).

    Article  PubMed  Google Scholar 

  147. Pathman, T., Doydum, A. & Bauer, P. J. Bringing order to life events: memory for the temporal order of autobiographical events over an extended period in school-aged children and adults. J. Exp. Child Psychol. 115, 309–325 (2013).

    Article  PubMed  Google Scholar 

  148. Keresztes, A., Ngo, C. T., Lindenberger, U., Werkle-Bergner, M. & Newcombe, N. S. Hippocampal maturation drives memory from generalization to specificity. Trends Cogn. Sci. 22, 676–686 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Callaghan, B. et al. Age-related increases in posterior hippocampal granularity are associated with remote detailed episodic memory in development. J. Neurosci. 41, 1738–1754 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Keresztes, A. et al. Hippocampal maturity promotes memory distinctiveness in childhood and adolescence. Proc. Natl Acad. Sci. USA 114, 9212–9217 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Shing, Y. L., Werkle-Bergner, M., Li, S. C. & Lindenberger, U. Associative and strategic components of episodic memory: a life-span dissociation. J. Exp. Psychol. Gen. 137, 495–513 (2008).

    Article  PubMed  Google Scholar 

  152. Riggins, T., Blankenship, S. L., Mulligan, E., Rice, K. & Redcay, E. Developmental differences in relations between episodic memory and hippocampal subregion volume during early childhood. Child. Dev. 86, 1710–1718 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Lee, J. K. et al. Changes in anterior and posterior hippocampus differentially predict item–space, item–time, and item–item memory improvement. Dev. Cogn. Neurosci. 41, 100741 (2020).

    Article  PubMed  Google Scholar 

  154. Gogtay, N. et al. Dynamic map** of normal human hippocampal development. Hippocampus 16, 664–672 (2006).

    Article  PubMed  Google Scholar 

  155. Langnes, E. et al. Anterior and posterior hippocampus macro- and microstructure across the lifespan in relation to memory—a longitudinal study. Hippocampus 30, 678–692 (2020).

    Article  PubMed  Google Scholar 

  156. Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655–669 (2014).

    Article  PubMed  Google Scholar 

  157. Schlichting, M. L. & Preston, A. R. Hippocampal–medial prefrontal circuit supports memory updating during learning and post-encoding rest. Neurobiol. Learn. Mem. 134, 37–51 (2016).

    Article  Google Scholar 

  158. Calabro, F. J., Murty, V. P., Jalbrzikowski, M., Tervo-Clemmens, B. & Luna, B. Development of hippocampal–prefrontal cortex interactions through adolescence. Cereb. Cortex 30, 1548–1558 (2020).

    Article  PubMed  Google Scholar 

  159. Barbas, H. & Blatt, G. J. Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5, 511–533 (1995).

    Article  PubMed  Google Scholar 

  160. DeMaster, D., Coughlin, C. & Ghetti, S. Retrieval flexibility and reinstatement in the develo** hippocampus. Hippocampus 26, 492–501 (2016).

    Article  PubMed  Google Scholar 

  161. Brunec, I. K. et al. Multiple scales of representation along the hippocampal anteroposterior axis in humans. Curr. Biol. 28, 2129–2135.e6 (2018).

    Article  PubMed  Google Scholar 

  162. Zeithamova, D. & Preston, A. R. Flexible memories: differential roles for medial temporal lobe and prefrontal cortex in cross-episode binding. J. Neurosci. 30, 14676–14684 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Forest, T. A., Finn, A. S. & Schlichting, M. L. General precedes specific in memory representations for structured experience. J. Exp. Psychol. Gen. https://doi.org/10.1037/xge0001104 (2021).

    Article  PubMed  Google Scholar 

  164. Gómez, R. L., Bootzin, R. R. & Nadel, L. Naps promote abstraction in language-learning infants. Psychol. Sci. 17, 670–674 (2006).

    Article  PubMed  Google Scholar 

  165. Forest, T. A., Abolghasem, Z., Finn, A. S. & Schlichting, M. L. Memories of structured input become increasingly distorted across development. Child Dev. (in the press).

  166. Sloutsky, V. M. & Fisher, A. V. When development and learning decrease memory: evidence against category-based induction in children. Psychol. Sci. 15, 553–558 (2004).

    Article  PubMed  Google Scholar 

  167. Brainerd, C. J., Reyna, V. F. & Ceci, S. J. Developmental reversals in false memory: a review of data and theory. Psychol. Bull. 134, 343–382 (2008).

    Article  PubMed  Google Scholar 

  168. Brainerd, C. J., Reyna, V. F. & Forrest, T. J. Are young children susceptible to the false-memory illusion? Child. Dev. 73, 1363–1377 (2002).

    Article  PubMed  Google Scholar 

  169. Johnson, J. S. & Newport, E. Critical period effects in second language learning: the influence of maturational state on the acquisition of english as a second language. Cogn. Psychol. 21, 60–99 (1989).

    Article  PubMed  Google Scholar 

  170. Birdsong, D. (ed.) Second Language Acquisition and the Critical Period Hypothesis (Routledge, 1999).

  171. Arnon, I. & Ramscar, M. Granularity and the acquisition of grammatical gender: how order-of-acquisition affects what gets learned. Cognition 122, 292–305 (2012).

    Article  PubMed  Google Scholar 

  172. Thompson-Schill, S., Ramscar, M. & Chrysikou, E. G. Cognition without control. Psychol. Sci. 18, 259–263 (2009).

    Google Scholar 

  173. Hudson, C. L. & Newport, E. L. Getting it right by getting it wrong: when learners change languages. Cogn. Psychol. 59, 30–66 (2009).

    Article  Google Scholar 

  174. Bever, T. G. in Regression in Mental Development: Basic Properties and Mechanisms (ed. Bever, T. G.) 153–188 (Lawrence Erlbaum, 1982).

  175. Kessen, W. & Kessen, M. L. Behavior of young children in a two-choice guessing problem. Child Dev 32, 779–788 (1961).

    PubMed  Google Scholar 

  176. Singleton, J. L. & Newport, E. L. When learners surpass their models: the acquisition of American Sign Language from inconsistent input. Cogn. Psychol. 49, 370–407 (2004).

    Article  PubMed  Google Scholar 

  177. Wonnacott, E. Balancing generalization and lexical conservatism: an artificial language study with child learners. J. Mem. Lang. 65, 1–14 (2011).

    Article  Google Scholar 

  178. Perfors, A. When do memory limitations lead to regularization? An experimental and computational investigation. J. Mem. Lang. 67, 486–506 (2012).

    Article  Google Scholar 

  179. Snow, C. E. & Hoefnagel-Höhle, M. The critical period for language acquisition: evidence from second language learning. Child. Dev. 49, 1114–1128 (1978).

    Article  Google Scholar 

  180. Aslin, R. N., Saffran, J. R. & Newport, E. L. Computation of conditional probability statistics by 8-month-old infants. Psychol. Sci. 9, 321–324 (1998).

    Article  Google Scholar 

  181. Brown, R. A First Language (Harvard Univ. Press, 1973).

  182. Fiser, J. & Aslin, R. N. Statistical learning of higher-order temporal structure from visual shape sequences. J. Exp. Psychol. Learn. Mem. Cogn. 28, 458–467 (2002).

    Article  PubMed  Google Scholar 

  183. Chomsky, N. Rules and Representations (Cambridge Univ. Press, 1980).

  184. Nissen, M. J. & Bullemer, P. Attentional requirements of learning: evidence from performance measures. Cogn. Psychol. 19, 1–32 (1987).

    Article  Google Scholar 

  185. Perruchet, P. & Pacton, S. Implicit learning and statistical learning: one phenomenon, two approaches. Trends Cogn. Sci. 10, 233–238 (2006).

    Article  PubMed  Google Scholar 

  186. Henke, K. A model for memory systems based on processing modes rather than consciousness. Nat. Rev. Neurosci. 11, 523–532 (2010).

    Article  PubMed  Google Scholar 

  187. Bays, B. C., Turk-Browne, N. B. & Seitz, A. R. Dissociable behavioural outcomes of visual statistical learning. Vis. Cogn. 23, 1072–1097 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Poldrack, R. A. et al. Interactive memory systems in the human brain. Nature 414, 546–550 (2001).

    Article  PubMed  Google Scholar 

  189. Alamia, A. & Zénon, A. Statistical regularities attract attention when task-relevant. Front. Hum. Neurosci. 10, 1–10 (2016).

    Article  Google Scholar 

  190. Zhao, J., Al-Aidroos, N. & Turk-Browne, N. B. Attention is spontaneously biased toward regularities. Psychol. Sci. 24, 667–677 (2013).

    Article  PubMed  Google Scholar 

  191. Squire, L. R. & Zola-Morgan, S. Memory: brain systems and behavior. Trends Neurosci. 11, 170–175 (1988).

    Article  PubMed  Google Scholar 

  192. Bayley, P. J., Frascino, J. C. & Squire, L. R. Robust habit learning in the absense of awareness and independent of the medial temporal lobe. Nature 436, 550–553 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Knowlton, B. J., Mangels, J. A. & Squire, L. R. A neostriatal habit learning system in humans. Science 273, 1399–1402 (1996).

    Article  PubMed  Google Scholar 

  194. Schacter, D. L. in Memory Systems of the Brain: Animal and Human Cognitive Processes (eds Weinberger, N. M., McGaugh, J. L. & Lynch, G.) 351–379 (Guildford Publications, 1985).

  195. McDonald, R. J. & White, N. M. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav. Neurosci. 107, 3–22 (1993).

    Article  PubMed  Google Scholar 

  196. McDonald, R. J. & White, N. M. Hippocampal and nonhippocampal contributions to place learning in rats. Behav. Neurosci. 109, 579–593 (1995).

    Article  PubMed  Google Scholar 

  197. Packard, M. G., Hirsh, R. & White, N. M. Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. J. Neurosci. 9, 1465–1472 (1989).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Ferbinteanu, J. & McDonald, R. J. Dorsal/ventral hippocampus, fornix, and conditioned place preference. Hippocampus 11, 187–200 (2001).

    Article  PubMed  Google Scholar 

  199. Chai, S.-C. & White, N. M. Effects of fimbria-fornix, hippocampus, and amygdala lesions on discrimination between proximal locations. Behav. Neurosci. 118, 770–784 (2004).

    Article  PubMed  Google Scholar 

  200. Poldrack, R. A. & Packard, M. G. Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41, 245–251 (2003).

    Article  PubMed  Google Scholar 

  201. Wimmer, G. E., Braun, E. K., Daw, N. D. & Shohamy, D. Episodic memory encoding interferes with reward learning and decreases striatal prediction errors. J. Neurosci. 34, 14901–14912 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Foerde, K., Knowlton, B. J. & Poldrack, R. A. Modulation of competing memory systems by distraction. Proc. Natl Acad. Sci. USA 103, 11778–11783 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Foerde, K. & Shohamy, D. Feedback timing modulates brain systems for learning in humans. J. Neurosci. 31, 13157–13167 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Dickerson, K. C. & Delgado, M. R. Contributions of the hippocampus to feedback learning. Cogn. Affect. Behav. Neurosci. 15, 861–877 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Ballard, I. C., Wagner, A. D. & McClure, S. M. Hippocampal pattern separation supports reinforcement learning. Nat. Commun. 10, 1073 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Duncan, K., Doll, B. B., Daw, N. D. & Shohamy, D. More than the sum of its parts: a role for the hippocampus in configural reinforcement learning. Neuron 98, 645–657 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Wimmer, G. E. & Shohamy, D. Preference by association: how memory mechanisms in the hippocampus bias decisions. Science 338, 270–273 (2012).

    Article  PubMed  Google Scholar 

  208. Shohamy, D. & Wagner, A. D. Integrating memories in the human brain: hippocampal–midbrain encoding of overlap** events. Neuron 60, 378–389 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Scimeca, J. M. & Badre, D. Striatal contributions to declarative memory retrieval. Neuron 75, 380–392 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Learning and Neural Development, Budding Minds, and Duncan laboratories at the University of Toronto for continued helpful discussion and support. They also thank C. Hudson Kam for feedback on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.S.F. and T.A.F. researched data for the article. A.S.F. and T.A.F. contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Amy S. Finn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Laura Batterink, Karolina Janacsek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forest, T.A., Schlichting, M.L., Duncan, K.D. et al. Changes in statistical learning across development. Nat Rev Psychol 2, 205–219 (2023). https://doi.org/10.1038/s44159-023-00157-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-023-00157-0

  • Springer Nature America, Inc.

Navigation