Log in

Plasmon-mediated chemical reactions

  • Primer
  • Published:

From Nature Reviews Methods Primers

View current issue Sign up to alerts

Abstract

Plasmon-mediated chemical reactions (PMCRs) are processes that make use of nanostructure-based surface plasmons as mediators to redistribute and convert photon energy in various time, space and energy scales, thereby driving chemical reactions by localizing photon, electronic and/or thermal energies. PMCRs can enhance the efficiency of an array of reactions, with potential advantages and unique features over thermochemistry, electrochemistry, photochemistry and photocatalysis. This Primer aims to give a general overview of the key points regarding PMCRs. Following the introduction of the main fundamental mechanism of plasmonic effects including enhanced electromagnetic near field, excited carriers and local heating on chemical reactions, the primary consideration and techniques for designing and constructing plasmonic catalysts are outlined. The typical methods used to characterize plasmonic catalysts and their properties are presented, as well as a discussion of PMCR mechanisms. Recent advances in PMCR application are also reviewed with some typical examples. Finally, the reproducibility and key optimization factors are emphasized, followed by a summary of future challenges and opportunities for the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1: PMCRs and their main mechanism.
Fig. 2: Workflow of PMCRs.
Fig. 3: Schematics of the simulations of plasmonic effect.
Fig. 4: Schematics of the characterization and catalytic test of the plasmonic catalysts.
Fig. 5: Typical experimental results analysis for the determination of catalytic performance and mechanism.
Fig. 6: Typical theoretical calculation process of plasmon-mediated chemical reactions.
Fig. 7: Applications of PMCRs.

Similar content being viewed by others

References

  1. Zhan, C. et al. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2, 216–230 (2018). This review summarizes the similarities and distinctive features of plasmon-enhanced molecular spectroscopy and PMCRs, and presents a comparison between PMCRs with traditional photochemical and thermochemical reactions.

    Article  Google Scholar 

  2. Zhang, Y. et al. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 118, 2927–2954 (2018).

    Article  Google Scholar 

  3. Baffou, G. & Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898–3907 (2014).

    Article  Google Scholar 

  4. Aslam, U., Rao, V. G., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018).

    Article  Google Scholar 

  5. Christopher, P. & Moskovits, M. Hot charge carrier transmission from plasmonic nanostructures. Annu. Rev. Phys. Chem. 68, 379–398 (2017).

    Article  ADS  Google Scholar 

  6. Hou, W. & Cronin, S. B. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612–1619 (2013).

    Article  Google Scholar 

  7. Gargiulo, J., Berté, R., Li, Y., Maier, S. A. & Cortés, E. From optical to chemical hot spots in plasmonics. Acc. Chem. Res. 52, 2525–2535 (2019).

    Article  Google Scholar 

  8. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007). This work is an important reference book for fundamentals and applications of plasmonics.

  9. Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858–3887 (2011).

    Article  Google Scholar 

  10. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    Article  ADS  Google Scholar 

  11. Hutter, E. & Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004).

    Article  Google Scholar 

  12. Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

    Article  Google Scholar 

  13. Amendola, V., Pilot, R., Frasconi, M., Maragò, O. M. & Iatì, M. A. Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter 29, 203002 (2017).

    Article  ADS  Google Scholar 

  14. Novotny, L. & van Hulst, N. Antennas for light. Nat. Photon. 5, 83–90 (2011).

    Article  ADS  Google Scholar 

  15. Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

    Article  Google Scholar 

  16. Chen, H., Shao, L., Li, Q. & Wang, J. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42, 2679–2724 (2013).

    Article  Google Scholar 

  17. Noguez, C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J. Phys. Chem. C 111, 3806–3819 (2007).

    Article  Google Scholar 

  18. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotech. 10, 25–34 (2015). This work is an excellent review of plasmon-induced hot carriers and their applications.

    Article  ADS  Google Scholar 

  19. Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotech. 10, 2–6 (2015).

    Article  ADS  Google Scholar 

  20. Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008).

    Article  Google Scholar 

  21. Baffou, G. & Quidant, R. Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat. Laser Photonics Rev. 7, 171–187 (2013).

    Article  ADS  Google Scholar 

  22. Hao, F. et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 8, 3983–3988 (2008).

    Article  ADS  Google Scholar 

  23. Frischkorn, C. & Wolf, M. Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. Chem. Rev. 106, 4207–4233 (2006).

    Article  Google Scholar 

  24. Hartland, G. V., Besteiro, L. V., Johns, P. & Govorov, A. O. What’s so hot about electrons in metal nanoparticles? ACS Energy Lett. 2, 1641–1653 (2017).

    Article  Google Scholar 

  25. Cho, G. C., Dekorsy, T., Bakker, H. J., Hövel, R. & Kurz, H. Generation and relaxation of coherent majority plasmons. Phys. Rev. Lett. 77, 4062–4065 (1996).

    Article  ADS  Google Scholar 

  26. Inouye, H., Tanaka, K., Tanahashi, I. & Hirao, K. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B 57, 11334–11340 (1998).

    Article  ADS  Google Scholar 

  27. Sundararaman, R., Narang, P., Jermyn, A. S., Goddard Iii, W. A. & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014). This work provides a theoretical description of plasmonic hot carrier generation in different plasmonic materials.

    Article  ADS  Google Scholar 

  28. Govorov, A. O., Zhang, H., Demir, H. V. & Gun’ko, Y. K. Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications. Nano Today 9, 85–101 (2014).

    Article  Google Scholar 

  29. Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014). This article presents a theoretical model to calculate the hot carrier production rate and energy distribution depending on the hot carrier lifetime and particle size.

    Article  Google Scholar 

  30. Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016).

    Article  Google Scholar 

  31. Baffou, G., Quidant, R. & Girard, C. Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. 94, 153109 (2009).

    Article  ADS  Google Scholar 

  32. Richardson, H. H., Carlson, M. T., Tandler, P. J., Hernandez, P. & Govorov, A. O. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 9, 1139–1146 (2009).

    Article  ADS  Google Scholar 

  33. Zhang, Z., Zhang, C., Zheng, H. & Xu, H. Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 52, 2506–2515 (2019).

    Article  Google Scholar 

  34. Nitzan, A. & Brus, L. E. Theoretical model for enhanced photochemistry on rough surfaces. J. Chem. Phys. 75, 2205–2214 (1981).

    Article  ADS  Google Scholar 

  35. Chen, C. J. & Osgood, R. M. Direct observation of the local-field-enhanced surface photochemical reactions. Phys. Rev. Lett. 50, 1705–1708 (1983). Together with Nitzan and Brus (1981), this is the first paper predicting and demonstrating the enhanced photochemistry on rough surfaces.

    Article  ADS  Google Scholar 

  36. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    Article  ADS  Google Scholar 

  37. Liu, Z., Hou, W., Pavaskar, P., Aykol, M. & Cronin, S. B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111–1116 (2011).

    Article  ADS  Google Scholar 

  38. Li, K. et al. Balancing near-field enhancement, absorption, and scattering for effective antenna–reactor plasmonic photocatalysis. Nano Lett. 17, 3710–3717 (2017).

    Article  ADS  Google Scholar 

  39. Awazu, K. et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676–1680 (2008).

    Article  Google Scholar 

  40. Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018). This work discusses real-time and real-space map** of a PMCR.

    Article  ADS  Google Scholar 

  41. Ingram, D. B. & Linic, S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133, 5202–5205 (2011).

    Article  Google Scholar 

  42. Yates, J. T. Photochemistry on TiO2: mechanisms behind the surface chemistry. Surf. Sci. 603, 1605–1612 (2009).

    Article  ADS  Google Scholar 

  43. Ueno, K. et al. Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J. Am. Chem. Soc. 130, 6928–6929 (2008).

    Article  Google Scholar 

  44. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014).

    Article  ADS  Google Scholar 

  45. Huang, Y.-F. et al. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 132, 9244–9246 (2010). This article presents the transformation of PATP on silver under excitation of surface plasmons.

    Article  Google Scholar 

  46. Christopher, P., **n, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011). This article demonstrates the plasmon-driven catalytic oxidation reactions on silver nanoparticles.

    Article  Google Scholar 

  47. Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013). This article demonstrates the plasmon-mediated dissociation of H2 on gold nanoparticles.

    Article  ADS  Google Scholar 

  48. Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotech. 8, 247–251 (2013). This article presents the whole water splitting mediated by plasmon-excited electrons and holes.

    Article  ADS  Google Scholar 

  49. Ke, X. et al. Tuning the reduction power of supported gold nanoparticle photocatalysts for selective reductions by manipulating the wavelength of visible light irradiation. Chem. Commun. 48, 3509–3511 (2012).

    Article  Google Scholar 

  50. Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015). This work shows that plasmon-induced interfacial charge transfer transition is demonstrated by transient spectroscopy.

    Article  ADS  Google Scholar 

  51. Boerigter, C., Aslam, U. & Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10, 6108–6115 (2016).

    Article  Google Scholar 

  52. Kumar, P. V. et al. Plasmon-induced direct hot-carrier transfer at metal–acceptor interfaces. ACS Nano 13, 3188–3195 (2019).

    Article  Google Scholar 

  53. Lee, S. A. & Link, S. Chemical interface dam** of surface plasmon resonances. Acc. Chem. Res. 54, 1950–1960 (2021).

    Article  Google Scholar 

  54. Cortés, E. Activating plasmonic chemistry. Science 362, 28–29 (2018).

    Article  ADS  Google Scholar 

  55. Baffou, G., Cichos, F. & Quidant, R. Applications and challenges of thermoplasmonics. Nat. Mater. 19, 946–958 (2020).

    Article  ADS  Google Scholar 

  56. Mateo, D., Cerrillo, J. L., Durini, S. & Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 50, 2173–2210 (2021).

    Article  Google Scholar 

  57. Fang, S. & Hu, Y. H. Thermo-photo catalysis: a whole greater than the sum of its parts. Chem. Soc. Rev. 51, 3609–3647 (2022).

    Article  Google Scholar 

  58. Dubi, Y. & Sivan, Y. “Hot” electrons in metallic nanostructures — non-thermal carriers or heating? Light Sci. Appl. 8, 89 (2019).

    Article  ADS  Google Scholar 

  59. Cao, L., Barsic, D. N., Guichard, A. R. & Brongersma, M. L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7, 3523–3527 (2007).

    Article  ADS  Google Scholar 

  60. Baffou, G. et al. Photoinduced heating of nanoparticle arrays. ACS Nano 7, 6478–6488 (2013).

    Article  Google Scholar 

  61. Hogan, N. J. et al. Nanoparticles heat through light localization. Nano Lett. 14, 4640–4645 (2014).

    Article  ADS  Google Scholar 

  62. Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393–398 (2016).

    Article  ADS  Google Scholar 

  63. Askes, S. H. C. & Garnett, E. C. Ultrafast thermal imprinting of plasmonic hotspots. Adv. Mater. 33, 2105192 (2021).

    Article  Google Scholar 

  64. Zhan, C. et al. Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields. Sci. Adv. 7, eabf0962 (2021).

    Article  ADS  Google Scholar 

  65. Zhu, W. et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7, 11495 (2016).

    Article  ADS  Google Scholar 

  66. Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

    Article  Google Scholar 

  67. **, J.-M. The Finite Element Method in Electromagnetics (Wiley, 2015).

  68. Teixeira, F. L. FDTD/FETD methods: a review on some recent advances and selected applications. J. Microwaves Optoelectron. Electromagn. Appl. 6, 83–95 (2007).

    Google Scholar 

  69. Hohenester, U. & Trügler, A. MNPBEM — a MATLAB toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183, 370–381 (2012).

    Article  ADS  Google Scholar 

  70. Zhao, L., Zou, S., Hao, E. & Schatz, G.C. in Theory and Applications of Computational Chemistry Ch. 4 (eds Dykstra, C. E. et al.) 47–65 (Elsevier, 2005).

  71. Narang, P., Sundararaman, R. & Atwater, H. A. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 5, 96–111 (2016).

    Article  Google Scholar 

  72. Rossi, T. P., Erhart, P. & Kuisma, M. Hot-carrier generation in plasmonic nanoparticles: the importance of atomic structure. ACS Nano 14, 9963–9971 (2020).

    Article  Google Scholar 

  73. Baffou, G., Quidant, R. & Girard, C. Thermoplasmonics modeling: a Green’s function approach. Phys. Rev. B 82, 165424 (2010).

    Article  ADS  Google Scholar 

  74. Linic, S., Chavez, S. & Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20, 916–924 (2021). This work presents a comprehensive review of the flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures.

    Article  ADS  Google Scholar 

  75. Aslam, U., Chavez, S. & Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotech. 12, 1000 (2017).

    Article  ADS  Google Scholar 

  76. Yang, J., Wang, D., Han, H. & Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013).

    Article  Google Scholar 

  77. Zheng, Z., Tachikawa, T. & Majima, T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd–Au nanorods studied at the single-particle level. J. Am. Chem. Soc. 137, 948–957 (2015).

    Article  Google Scholar 

  78. Furube, A., Du, L., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852–14853 (2007).

    Article  Google Scholar 

  79. Bian, Z., Tachikawa, T., Zhang, P., Fujitsuka, M. & Majima, T. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 136, 458–465 (2013).

    Article  Google Scholar 

  80. Zhang, Z. & Yates, J. T. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112, 5520–5551 (2012).

    Article  Google Scholar 

  81. Tagliabue, G. et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat. Mater. 19, 1312–1318 (2020). This article demonstrates the ultrafast dynamics of hot holes in metal–semiconductor heterostructures.

    Article  ADS  Google Scholar 

  82. Linsebigler, A. L., Lu, G. & Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).

    Article  Google Scholar 

  83. Jones, M. R., Osberg, K. D., Macfarlane, R. J., Langille, M. R. & Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111, 3736–3827 (2011).

    Article  Google Scholar 

  84. **a, Y., **ong, Y., Lim, B. & Skrabalak, S. E. Shape‐controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    Article  Google Scholar 

  85. Tao, A. R., Habas, S. & Yang, P. Shape control of colloidal metal nanocrystals. Small 4, 310–325 (2008).

    Article  Google Scholar 

  86. Lohse, S. E. & Murphy, C. J. The quest for shape control: a history of gold nanorod synthesis. Chem. Mater. 25, 1250–1261 (2013).

    Article  Google Scholar 

  87. Yang, K., Yao, X., Liu, B. & Ren, B. Metallic plasmonic array structures: principles, fabrications, properties, and applications. Adv. Mater. 33, 2007988 (2021).

    Article  Google Scholar 

  88. Grzelczak, M., Pérez-Juste, J., Mulvaney, P. & Liz-Marzán, L.M. in Colloidal Synthesis of Plasmonic Nanometals Ch. 6 (ed. Liz-Marzán, L.) 197–220 (Jenny Stanford, 2020).

  89. Lin, H.-x et al. Supersaturation-dependent surface structure evolution: from ionic, molecular to metallic micro/nanocrystals. J. Am. Chem. Soc. 135, 9311–9314 (2013).

    Article  Google Scholar 

  90. Wang, Z., Li, C. & Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 48, 2109–2125 (2019).

    Article  Google Scholar 

  91. Zaera, F. Nanostructured materials for applications in heterogeneous catalysis. Chem. Soc. Rev. 42, 2746–2762 (2013).

    Article  Google Scholar 

  92. Zhang, N. et al. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photon. 10, 473–482 (2016).

    Article  ADS  Google Scholar 

  93. Zhang, W. et al. Large scale synthesis of pinhole-free shell-isolated nanoparticles (SHINs) using improved atomic layer deposition (ALD) method for practical applications. J. Raman Spectrosc. 46, 1200–1204 (2015).

    Article  ADS  Google Scholar 

  94. Dutta, S. K., Mehetor, S. K. & Pradhan, N. Metal semiconductor heterostructures for photocatalytic conversion of light energy. J. Phys. Chem. Lett. 6, 936–944 (2015).

    Article  Google Scholar 

  95. Sun, Z. et al. A general approach to the synthesis of gold–metal sulfide core–shell and heterostructures. Angew. Chem. Int. Ed. 48, 2881–2885 (2009).

    Article  Google Scholar 

  96. Fan, F.-R. et al. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J. Am. Chem. Soc. 130, 6949–6951 (2008).

    Article  Google Scholar 

  97. Seh, Z. W. et al. Janus Au–TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 24, 2310–2314 (2012).

    Article  Google Scholar 

  98. Mokari, T., Sztrum, C. G., Salant, A., Rabani, E. & Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater. 4, 855–863 (2005).

    Article  ADS  Google Scholar 

  99. Nørskov, J. K. et al. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 37, 2163–2171 (2008).

    Article  Google Scholar 

  100. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  Google Scholar 

  101. Lin, Q. et al. Optical suppression of energy barriers in single molecule-metal binding. Sci. Adv. 8, eabp9285 (2022).

    Article  ADS  Google Scholar 

  102. Modena, M. M., Rühle, B., Burg, T. P. & Wuttke, S. Nanoparticle characterization: what to measure? Adv. Mater. 31, 1901556 (2019).

    Article  Google Scholar 

  103. Chee, S. W., Lunkenbein, T., Schlögl, R. & Cuenya, B. R. In situ and operando electron microscopy in heterogeneous catalysis — insights into multi-scale chemical dynamics. J. Phys. Condens. Matter 33, 153001 (2021).

    Article  Google Scholar 

  104. Jans, H., Liu, X., Austin, L., Maes, G. & Huo, Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal. Chem. 81, 9425–9432 (2009).

    Article  Google Scholar 

  105. Liu, B.-J. et al. Extraction of absorption and scattering contribution of metallic nanoparticles toward rational synthesis and application. Anal. Chem. 87, 1058–1065 (2015).

    Article  Google Scholar 

  106. Pestryakov, A. N. et al. Study of copper nanoparticles formation on supports of different nature by UV–Vis diffuse reflectance spectroscopy. Chem. Phys. Lett. 385, 173–176 (2004).

    Article  ADS  Google Scholar 

  107. Li, Y., **g, C., Zhang, L. & Long, Y.-T. Resonance scattering particles as biological nanosensors in vitro and in vivo. Chem. Soc. Rev. 41, 632–642 (2012).

    Article  Google Scholar 

  108. Hu, S. et al. Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy. Nat. Commun. 11, 2518 (2020).

    Article  ADS  Google Scholar 

  109. Novo, C., Funston, A. M. & Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotech. 3, 598–602 (2008). This article establishes a quantitative method of using scattering spectroscopy to probe the catalytic process at the single nanoparticle level.

    Article  Google Scholar 

  110. Dombi, P. et al. Strong-field nano-optics. Rev. Mod. Phys. 92, 025003 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  111. Esmann, M. et al. Vectorial near-field coupling. Nat. Nanotech. 14, 698–704 (2019).

    Article  ADS  Google Scholar 

  112. Polman, A., Kociak, M. & García de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019).

    Article  ADS  Google Scholar 

  113. Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    Article  Google Scholar 

  114. Schnell, M. et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photon. 3, 287–291 (2009).

    Article  ADS  Google Scholar 

  115. Sheldon, M. T., van de Groep, J., Brown, A. M., Polman, A. & Atwater, H. A. Plasmoelectric potentials in metal nanostructures. Science 346, 828–831 (2014).

    Article  ADS  Google Scholar 

  116. Chen, R., Fan, F., Dittrich, T. & Li, C. Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy. Chem. Soc. Rev. 47, 8238–8262 (2018).

    Article  Google Scholar 

  117. Zhang, H. et al. Plasmon-induced interfacial hot-electron transfer directly probed by Raman spectroscopy. Chem 6, 689–702 (2020).

    Article  Google Scholar 

  118. Zhan, C. et al. Interfacial construction of plasmonic nanostructures for the utilization of the plasmon-excited electrons and holes. J. Am. Chem. Soc. 141, 8053–8057 (2019).

    Article  Google Scholar 

  119. Sambur, J. B. et al. Sub-particle reaction and photocurrent map** to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).

    Article  ADS  Google Scholar 

  120. Huang, Y.-F. et al. Microphotoelectrochemical surface-enhanced Raman spectroscopy: toward bridging hot-electron transfer with a molecular reaction. J. Am. Chem. Soc. 142, 8483–8489 (2020).

    Article  Google Scholar 

  121. Schlather, A. E. et al. Hot hole photoelectrochemistry on Au@SiO2@Au nanoparticles. J. Phys. Chem. Lett. 8, 2060–2067 (2017).

    Article  Google Scholar 

  122. Zhan, C. et al. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. 10, 2671 (2019). This work presents the unique photoelectrochemical feature of plasmonic electrodes.

    Article  ADS  Google Scholar 

  123. Reddy, H. et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 369, 423–426 (2020).

    Article  ADS  Google Scholar 

  124. Zhang, X. et al. Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett. 18, 1714–1723 (2018).

    Article  ADS  Google Scholar 

  125. Zhang, Z. et al. Insights into the nature of plasmon-driven catalytic reactions revealed by HV-TERS. Nanoscale 5, 3249–3252 (2013).

    Article  ADS  Google Scholar 

  126. Hu, S. et al. Quantifying surface temperature of thermoplasmonic nanostructures. J. Am. Chem. Soc. 140, 13680–13686 (2018).

    Article  Google Scholar 

  127. Baffou, G., Kreuzer, M. P., Kulzer, F. & Quidant, R. Temperature map** near plasmonic nanostructures using fluorescence polarization anisotropy. Opt. Express 17, 3291–3298 (2009).

    Article  ADS  Google Scholar 

  128. Wang, D. et al. Spatial and temporal nanoscale plasmonic heating quantified by thermoreflectance. Nano Lett. 19, 3796–3803 (2019).

    Article  ADS  Google Scholar 

  129. Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018). This article uses light-dependent activation barriers to distinguish the hot carrier and thermal contributions in PMCRs, and has sparked a lot of discussion about temperature measurement in PMCR systems.

    Article  ADS  Google Scholar 

  130. Brolo, A. G., Sanderson, A. C. & Smith, A. P. Ratio of the surface-enhanced anti-Stokes scattering to the surface-enhanced Stokes–Raman scattering for molecules adsorbed on a silver electrode. Phys. Rev. B 69, 045424 (2004).

    Article  ADS  Google Scholar 

  131. Itoh, T. et al. Second enhancement in surface-enhanced resonance Raman scattering revealed by an analysis of anti-Stokes and Stokes Raman spectra. Phys. Rev. B 76, 085405 (2007).

    Article  ADS  Google Scholar 

  132. Lin, K.-Q. et al. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering. Nat. Commun. 8, 14891 (2017).

    Article  ADS  Google Scholar 

  133. Desiatov, B., Goykhman, I. & Levy, U. Direct temperature map** of nanoscale plasmonic devices. Nano Lett. 14, 648–652 (2014).

    Article  ADS  Google Scholar 

  134. Majumdar, A. Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999).

    Article  ADS  Google Scholar 

  135. Suh, J. S., Jang, N. H., Jeong, D. H. & Moskovits, M. Adsorbate photochemistry on a colloid surface: phthalazine on silver. J. Phys. Chem. 100, 805–813 (1996).

    Article  Google Scholar 

  136. Jeong, D. H., Jang, N. H., Suh, J. S. & Moskovits, M. Photodecomposition of diazanaphthalenes adsorbed on silver colloid surfaces. J. Phys. Chem. B 104, 3594–3600 (2000).

    Article  Google Scholar 

  137. Zhan, C., Chen, X.-J., Huang, Y.-F., Wu, D.-Y. & Tian, Z.-Q. Plasmon-mediated chemical reactions on nanostructures unveiled by surface-enhanced Raman spectroscopy. Acc. Chem. Res. 52, 2784–2792 (2019).

    Article  Google Scholar 

  138. van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotech. 7, 583–586 (2012).

    Article  ADS  Google Scholar 

  139. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    Article  ADS  Google Scholar 

  140. Wang, Z. et al. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Joule 5, 344–359 (2021).

    Article  Google Scholar 

  141. Zhong, Y. et al. Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy. Angew. Chem. Int. Ed. 53, 10350–10354 (2014).

    Article  Google Scholar 

  142. Shi, X. et al. Enhanced water splitting under modal strong coupling conditions. Nat. Nanotech. 13, 953–958 (2018).

    Article  ADS  Google Scholar 

  143. Kale, M. J., Avanesian, T. & Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4, 116–128 (2014).

    Article  Google Scholar 

  144. Christopher, P., **n, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012).

    Article  ADS  Google Scholar 

  145. Swearer, D. F. et al. Heterometallic antenna–reactor complexes for photocatalysis. Proc. Natl Acad. Sci. USA 113, 8916–8920 (2016). This work presents heterometallic antenna−reactor complexes with a plasmonic nanostructure and catalytic mediator for PMCRs.

    Article  ADS  Google Scholar 

  146. Wang, C. et al. Endothermic reaction at room temperature enabled by deep-ultraviolet plasmons. Nat. Mater. 20, 346–352 (2021).

    Article  ADS  Google Scholar 

  147. Kim, Y., Smith, J. G. & Jain, P. K. Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles. Nat. Chem. 10, 763–769 (2018).

    Article  Google Scholar 

  148. Govorov, A. O. & Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007).

    Article  Google Scholar 

  149. Han, X. X., Rodriguez, R. S., Haynes, C. L., Ozaki, Y. & Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 1, 87 (2022).

    Article  Google Scholar 

  150. Ding, S.-Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    Article  ADS  Google Scholar 

  151. Wang, X., Huang, S.-C., Hu, S., Yan, S. & Ren, B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2, 253–271 (2020).

    Article  Google Scholar 

  152. Boerigter, C., Campana, R., Morabito, M. & Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7, 10545 (2016).

    Article  ADS  Google Scholar 

  153. Liu, J. et al. Plasmonic hot electron-mediated hydrodehalogenation kinetics on nanostructured Ag electrodes. J. Am. Chem. Soc. 142, 17489–17498 (2020).

    Article  Google Scholar 

  154. Bonn, M. et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999). This article presents a comparison of phonon-mediated and electron-mediated chemical reaction.

    Article  Google Scholar 

  155. Huang, S.-C. et al. Probing nanoscale spatial distribution of plasmonically excited hot carriers. Nat. Commun. 11, 4211 (2020). This article uses TERS to probe the nanoscale spatial distribution of plasmonically excited hot carriers.

    Article  ADS  Google Scholar 

  156. Morton, S. M., Silverstein, D. W. & Jensen, L. Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 111, 3962–3994 (2011).

    Article  Google Scholar 

  157. Wu, Q., Zhou, L., Schatz, G. C., Zhang, Y. & Guo, H. Mechanistic insights into photocatalyzed H2 dissociation on Au clusters. J. Am. Chem. Soc. 142, 13090–13101 (2020). This article uses DFT and TDDFT calculation to describe the physical picture of the mechanism of localized SPR-induced H2 dissociation on gold clusters.

    Article  Google Scholar 

  158. Ma, H., Gao, F. & Liang, W. Plasmon resonance of isolated gold hollow nanoparticles and nanoparticle pairs: insights from electronic structure calculations. J. Phys. Chem. C 116, 1755–1763 (2012).

    Article  Google Scholar 

  159. Long, R. & Prezhdo, O. V. Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. J. Am. Chem. Soc. 136, 4343–4354 (2014).

    Article  Google Scholar 

  160. Jensen, L., Aikens, C. M. & Schatz, G. C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. 37, 1061–1073 (2008).

    Article  Google Scholar 

  161. Zhang, R. et al. How to identify plasmons from the optical response of nanostructures. ACS Nano 11, 7321–7335 (2017).

    Article  Google Scholar 

  162. Bursi, L., Calzolari, A., Corni, S. & Molinari, E. Light-induced field enhancement in nanoscale systems from first-principles: the case of polyacenes. ACS Photonics 1, 1049–1058 (2014).

    Article  Google Scholar 

  163. Zhang, P., **, W. & Liang, W. Size-dependent optical properties of aluminum nanoparticles: from classical to quantum description. J. Phys. Chem. C 122, 10545–10551 (2018).

    Article  Google Scholar 

  164. Hammer, B., Morikawa, Y. & Nørskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76, 2141 (1996).

    Article  ADS  Google Scholar 

  165. Calle-Vallejo, F., Loffreda, D., Koper, M. & Sautet, P. Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    Article  Google Scholar 

  166. Kresse, G., Gil, A. & Sautet, P. Significance of single-electron energies for the description of CO on Pt(111). Phys. Rev. B 68, 073401 (2003).

    Article  ADS  Google Scholar 

  167. Ji, Y. & Luo, Y. Theoretical study on the mechanism of photoreduction of CO2 to CH4 on the anatase TiO2 (101) surface. ACS Catal. 6, 2018–2025 (2016).

    Article  Google Scholar 

  168. Chu, W., Zheng, Q., Prezhdo, O. V. & Zhao, J. CO2 photoreduction on metal oxide surface is driven by transient capture of hot electrons: ab initio quantum dynamics simulation. J. Am. Chem. Soc. 142, 3214–3221 (2020).

    Article  Google Scholar 

  169. Zhang, L. et al. Dynamics of photoexcited small polarons in transition-metal oxides. J. Phys. Chem. Lett. 12, 2191–2198 (2021).

    Article  Google Scholar 

  170. Martirez, J. M. P. & Carter, E. A. Excited-state N2 dissociation pathway on Fe-functionalized Au. J. Am. Chem. Soc. 139, 4390–4398 (2017).

    Article  Google Scholar 

  171. Yin, R. et al. Dissociative chemisorption of O2 on Al(111): dynamics on a correlated wave-function-based potential energy surface. J. Phys. Chem. Lett. 9, 3271–3277 (2018).

    Article  Google Scholar 

  172. Zhang, X.-G. et al. Light driven mechanism of carbon dioxide reduction reaction to carbon monoxide on gold nanoparticles: a theoretical prediction. J. Phys. Chem. Lett. 12, 1125–1130 (2021).

    Article  Google Scholar 

  173. Zhang, Y., Nelson, T., Tretiak, S., Guo, H. & Schatz, G. C. Plasmonic hot-carrier-mediated tunable photochemical reactions. ACS Nano 12, 8415–8422 (2018).

    Article  Google Scholar 

  174. Gavnholt, J., Olsen, T., Engelund, M. & Schiøtz, J. Δ self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces. Phys. Rev. B 78, 075441 (2008).

    Article  ADS  Google Scholar 

  175. Olsen, T., Gavnholt, J. & Schiøtz, J. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces. Phys. Rev. B 79, 035403 (2009).

    Article  ADS  Google Scholar 

  176. Behler, J., Delley, B., Reuter, K. & Scheffler, M. Nonadiabatic potential-energy surfaces by constrained density-functional theory. Phys. Rev. B 75, 115409 (2007).

    Article  ADS  Google Scholar 

  177. Wu, D.-Y. et al. Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal SERS enhancement: a DFT study. J. Phys. Chem. C 113, 18212–18222 (2009).

    Article  Google Scholar 

  178. Barone, V. et al. Computational molecular spectroscopy. Nat. Rev. Methods Primers 1, 38 (2021).

    Article  Google Scholar 

  179. Neugebauer, J., Reiher, M., Kind, C. & Hess, B. A. Quantum chemical calculation of vibrational spectra of large molecules — Raman and IR spectra for buckminsterfullerene. J. Comput. Chem. 23, 895–910 (2002).

    Article  Google Scholar 

  180. Wu, D.-Y. et al. Chemical enhancement effects in SERS spectra: a quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals. J. Phys. Chem. C 112, 4195–4204 (2008).

    Article  Google Scholar 

  181. Duan, S., Ai, Y.-J., Hu, W. & Luo, Y. Roles of plasmonic excitation and protonation on photoreactions of p-aminobenzenethiol on Ag nanoparticles. J. Phys. Chem. C 118, 6893–6902 (2014).

    Article  Google Scholar 

  182. Zayak, A. et al. Chemical Raman enhancement of organic adsorbates on metal surfaces. Phys. Rev. Lett. 106, 083003 (2011).

    Article  ADS  Google Scholar 

  183. Zhai, Y. et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nat. Mater. 15, 889–895 (2016).

    Article  ADS  Google Scholar 

  184. Gellé, A. et al. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem. Rev. 120, 986–1041 (2020).

    Article  ADS  Google Scholar 

  185. Han, P. et al. Promoting Ni(II) catalysis with plasmonic antennas. Chem 5, 2879–2899 (2019).

    Article  Google Scholar 

  186. **e, W. & Schlücker, S. Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 6, 7570 (2015).

    Article  ADS  Google Scholar 

  187. de Nijs, B. et al. Plasmonic tunnel junctions for single-molecule redox chemistry. Nat. Commun. 8, 994 (2017).

    Article  ADS  Google Scholar 

  188. Wang, F. et al. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 135, 5588–5601 (2013).

    Article  Google Scholar 

  189. Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013).

    Article  ADS  Google Scholar 

  190. Huang, Y.-F. et al. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. Int. Ed. 53, 2353–2357 (2014).

    Article  Google Scholar 

  191. Robatjazi, H. et al. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum–cuprous oxide antenna–reactor nanoparticles. Nat. Commun. 8, 27 (2017).

    Article  ADS  Google Scholar 

  192. Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017).

    Article  ADS  Google Scholar 

  193. Hou, W. et al. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 1, 929–936 (2011).

    Article  Google Scholar 

  194. Yang, J., Guo, Y., Lu, W., Jiang, R. & Wang, J. Emerging applications of plasmons in driving CO2 reduction and N2 fixation. Adv. Mater. 30, 1802227 (2018).

    Article  Google Scholar 

  195. Wang, S. et al. Positioning the water oxidation reaction sites in plasmonic photocatalysts. J. Am. Chem. Soc. 139, 11771–11778 (2017).

    Article  Google Scholar 

  196. Devasia, D., Wilson, A. J., Heo, J., Mohan, V. & Jain, P. K. A rich catalog of C–C bonded species formed in CO2 reduction on a plasmonic photocatalyst. Nat. Commun. 12, 2612 (2021).

    Article  ADS  Google Scholar 

  197. Zhou, L. et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy. 5, 61–70 (2020).

    Article  ADS  Google Scholar 

  198. Yang, H. et al. Tunable wavelength enhanced photoelectrochemical cells from surface plasmon resonance. J. Am. Chem. Soc. 138, 16204–16207 (2016).

    Article  Google Scholar 

  199. Oshikiri, T., Ueno, K. & Misawa, H. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem. Int. Ed. 53, 9802–9805 (2014).

    Article  Google Scholar 

  200. Cortés, E. et al. Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 8, 14880 (2017).

    Article  ADS  Google Scholar 

  201. Oksenberg, E. et al. Energy-resolved plasmonic chemistry in individual nanoreactors. Nat. Nanotech. 16, 1378–1385 (2021).

    Article  ADS  Google Scholar 

  202. Sun, M. & Xu, H. A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 8, 2777–2786 (2012).

    Article  Google Scholar 

  203. Grirrane, A., Corma, A. & García, H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 322, 1661–1664 (2008).

    Article  ADS  Google Scholar 

  204. Wu, D.-Y. et al. Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS. Chem. Commun. 47, 2520–2522 (2011).

    Article  Google Scholar 

  205. Zhao, L.-B. et al. Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds. J. Phys. Chem. Lett. 5, 1259–1266 (2014).

    Article  Google Scholar 

  206. Dong, B., Fang, Y., Chen, X., Xu, H. & Sun, M. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p,p′-dimercaptoazobenzene on Au, Ag, and Cu films. Langmuir 27, 10677–10682 (2011).

    Article  Google Scholar 

  207. **ao, Q. et al. Alloying gold with copper makes for a highly selective visible-light photocatalyst for the reduction of nitroaromatics to anilines. ACS Catal. 6, 1744–1753 (2016).

    Article  Google Scholar 

  208. da Silva, A. G. et al. Plasmonic nanorattles as next‐generation catalysts for surface plasmon resonance‐mediated oxidations promoted by activated oxygen. Angew. Chem. Int. Ed. 55, 7111–7115 (2016).

    Article  ADS  Google Scholar 

  209. Zong, Y. et al. Plasmon-induced decarboxylation of mercaptobenzoic acid on nanoparticle film monitored by surface-enhanced Raman spectroscopy. RSC Adv. 4, 31810–31816 (2014).

    Article  ADS  Google Scholar 

  210. Wei, H., Loeb, S. K., Halas, N. J. & Kim, J.-H. Plasmon-enabled degradation of organic micropollutants in water by visible-light illumination of Janus gold nanorods. Proc. Natl Acad. Sci. USA 117, 15473–15481 (2020).

    Article  ADS  Google Scholar 

  211. Devasenathipathy, R. et al. Plasmonic photoelectrochemical coupling reactions of para-aminobenzoic acid on nanostructured gold electrodes. J. Am. Chem. Soc. 144, 3821–3832 (2022).

    Article  Google Scholar 

  212. Hao, C.-H. et al. Visible-light-driven selective photocatalytic hydrogenation of cinnamaldehyde over Au/SiC catalysts. J. Am. Chem. Soc. 138, 9361–9364 (2016).

    Article  Google Scholar 

  213. Robatjazi, H. et al. Plasmon-driven carbon–fluorine (C(sp3)–F) bond activation with mechanistic insights into hot-carrier-mediated pathways. Nat. Catal. 3, 564–573 (2020).

    Article  Google Scholar 

  214. Hung, W. H., Aykol, M., Valley, D., Hou, W. & Cronin, S. B. Plasmon resonant enhancement of carbon monoxide catalysis. Nano Lett. 10, 1314–1318 (2010).

    Article  ADS  Google Scholar 

  215. Xu, G. et al. Unraveling the mechanism of ammonia selective catalytic oxidation on Ag/Al2O3 catalysts by operando spectroscopy. ACS Catal. 11, 5506–5516 (2021).

    Article  Google Scholar 

  216. Tanaka, A., Hashimoto, K. & Kominami, H. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. J. Am. Chem. Soc. 134, 14526–14533 (2012).

    Article  Google Scholar 

  217. Li, H. et al. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 139, 3513–3521 (2017).

    Article  Google Scholar 

  218. Mukherjee, S. et al. Hot-electron-induced dissociation of H-2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).

    Article  Google Scholar 

  219. Quiroz, J. et al. Controlling reaction selectivity over hybrid plasmonic nanocatalysts. Nano Lett. 18, 7289–7297 (2018).

    Article  ADS  Google Scholar 

  220. Mao, C. et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light. Chem 5, 2702–2717 (2019).

    Article  Google Scholar 

  221. Tang, J., Durrant, J. R. & Klug, D. R. Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc. 130, 13885–13891 (2008).

    Article  Google Scholar 

  222. Osterloh, F. E. Photocatalysis versus photosynthesis: a sensitivity analysis of devices for solar energy conversion and chemical transformations. ACS Energy Lett. 2, 445–453 (2017).

    Article  Google Scholar 

  223. Liu, G. et al. Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 138, 9128–9136 (2016).

    Article  Google Scholar 

  224. Zhang, Z. et al. A nonmetal plasmonic Z-scheme photocatalyst with UV- to NIR-driven photocatalytic protons reduction. Adv. Mater. 29, 1606688 (2017).

    Article  Google Scholar 

  225. Zheng, B. Y. et al. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat. Commun. 6, 7797 (2015).

    Article  ADS  Google Scholar 

  226. Schlücker, S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53, 4756–4795 (2014).

    Article  Google Scholar 

  227. Zhan, C., Moskovits, M. & Tian, Z.-Q. Recent progress and prospects in plasmon-mediated chemical reaction. Matter 3, 42–56 (2020).

    Article  Google Scholar 

  228. Baffou, G., Bordacchini, I., Baldi, A. & Quidant, R. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light Sci. Appl. 9, 108 (2020).

    Article  ADS  Google Scholar 

  229. Yu, Y., Sundaresan, V. & Willets, K. A. Hot carriers versus thermal effects: resolving the enhancement mechanisms for plasmon-mediated photoelectrochemical reactions. J. Phys. Chem. C 122, 5040–5048 (2018).

    Article  Google Scholar 

  230. Ou, W. et al. Thermal and nonthermal effects in plasmon-mediated electrochemistry at nanostructured Ag electrodes. Angew. Chem. Int. Ed. 59, 6790–6793 (2020).

    Article  Google Scholar 

  231. Li, W. et al. Single-molecular catalysis identifying activation energy of the intermediate product and rate-limiting step in plasmonic photocatalysis. Nano Lett. 20, 2507–2513 (2020).

    Article  ADS  Google Scholar 

  232. Wright, D. et al. Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry. Nat. Catal. 4, 157–163 (2021).

    Article  Google Scholar 

  233. Choi, H.-K. et al. Single-molecule surface-enhanced Raman scattering as a probe of single-molecule surface reactions: promises and current challenges. Acc. Chem. Res. 52, 3008–3017 (2019).

    Article  Google Scholar 

  234. Timoshenko, J. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 5, 259–267 (2022).

    Article  Google Scholar 

  235. Handoko, A. D., Wei, F., Jenndy, Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018).

    Article  Google Scholar 

  236. Shao, F. et al. In-situ nanospectroscopic imaging of plasmon-induced two-dimensional [4+4]-cycloaddition polymerization on Au(111). Nat. Commun. 12, 4557 (2021).

    Article  ADS  Google Scholar 

  237. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    Article  ADS  Google Scholar 

  238. Zhan, C. et al. Single-molecule plasmonic optical trap**. Matter 3, 1350–1360 (2020).

    Article  Google Scholar 

  239. Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019).

    Article  ADS  Google Scholar 

  240. Zhang, R. et al. Chemical map** of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    Article  ADS  Google Scholar 

  241. Mahapatra, S., Schultz, J. F., Li, L., Zhang, X. & Jiang, N. Controlling localized plasmons via an atomistic approach: attainment of site-selective activation inside a single molecule. J. Am. Chem. Soc. 144, 2051–2055 (2022). This article demonstrates the site-selective activation inside a single molecule by surface plasmons.

    Article  Google Scholar 

  242. Zhao, J., Xue, S., Ji, R., Li, B. & Li, J. Localized surface plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev. 50, 12070–12097 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2015CB932300) and the National Natural Science Foundation of China (21727807, 21533006, 22032004, 91427304, 22002036 and 22272140). C.Z. thanks the Alexander von Humboldt Foundation (AvH) for support with an AvH postdoctoral research grant. The authors thank B. Roldan (Fritz-Haber Institute of the Max-Planck Society) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.Z., S.H., Z.-Q.T.); Experimentation (S.H., J.Y., C.Z.); Results (C.Z., X.-G.Z. D.-Y.W.); Applications (C.Z., Z.-Q.T.); Reproducibility and data deposition (C.Z.); Limitations and optimizations (C.Z., Z.-Q.T.); Outlook (all authors); Overview of the Primer (Z.-Q.T., C.Z.).

Corresponding authors

Correspondence to Chao Zhan or Zhong-Qun Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Andrea Baldi and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Direct charge transfer

The decay of a surface plasmon results in the direct excitation of an electron/hole into an unoccupied adsorbate orbital/semiconductor band with matching energy and leaves the hole/electron in the plasmonic nanostructure.

Fermi–Dirac distribution

The distribution of particles over energy states in systems consisting of many identical particles that obey the Pauli exclusion principle.

Hot carriers

Carriers including electrons or holes not in thermal equilibrium with the atoms in a material are frequently referred to as hot carriers.

Indirect charge transfer

Excited carriers are formed in the plasmonic nanostructure with a roughly flat energy distribution and, subsequently, transfer to adsorbed molecules/semiconductor forming the charged state.

Landau dam**

A process occurring because of the energy exchange between an electromagnetic wave and particles in the plasma, which can interact strongly with the wave. In a surface plasmon system, the Landau dam** process results in direct transition between two states near the Fermi surface, assisted by the surface plasmon momentum, and creating a hot hole and a hot electron.

Lossy media

In optics, the media are not transparent to the incident light waves and result in absorptions. The dissipation of a medium is usually described by the imaginary part of its dielectric permittivity.

Periodic boundary condition

A term often used in computer simulations and mathematical models, for which a unit cell is chosen to approximate a large (infinite) system.

Photothermal effect

The conversion of photon energy to thermal energy.

Surface plasmon resonance

(SPR). The resonant collective oscillation of conduction electrons in nanostructures stimulated by incident light.

Turnover frequency

The derivative of the number of turnovers with respect to the time per active site.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, C., Yi, J., Hu, S. et al. Plasmon-mediated chemical reactions. Nat Rev Methods Primers 3, 12 (2023). https://doi.org/10.1038/s43586-023-00195-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00195-1

  • Springer Nature Limited

This article is cited by

Navigation