Log in

Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges

  • Perspective
  • Published:

From Nature Metabolism

View current issue Submit your manuscript

Abstract

Although the impact of the gut microbiome on health and disease is well established, there is controversy regarding the presence of microorganisms such as bacteria and their products in organs and tissues. However, recent contamination-aware findings of tissue-resident microbial signatures provide accumulating evidence in support of bacterial translocation in cardiometabolic disease. The latter provides a distinct paradigm for the link between microbial colonizers of mucosal surfaces and host metabolism. In this Perspective, we re-evaluate the concept of tissue-resident bacteria including their role in metabolic low-grade tissue and systemic inflammation. We examine the limitations and challenges associated with studying low bacterial biomass samples and propose experimental and analytical strategies to overcome these issues. Our Perspective aims to encourage further investigation of the mechanisms linking tissue-resident bacteria to host metabolism and their potentially actionable health implications for prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Consensus signatures across tissues and reported studies.
Fig. 2: Sources and mechanisms of bacterial translocation.
Fig. 3: Consequences of bacterial translocation in metabolically active organs.
Fig. 4: Overview of key considerations in microbiome studies involving low bacterial biomass samples.

Similar content being viewed by others

References

  1. Hou, K. et al. Microbiota in health and diseases. Sig Transduct. Target Ther. 7, 135 (2022).

    Article  Google Scholar 

  2. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Chakaroun, R. M., Massier, L. & Kovacs, P. Gut microbiome, intestinal permeability, and tissue bacteria in metabolic disease: perpetrators or bystanders? Nutrients 12, 1082 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Bleau, C., Karelis, A. D., St-Pierre, D. H. & Lamontagne, L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab. Res. Rev. 31, 545–561 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Raybould, H. E. Gut microbiota, epithelial function and derangements in obesity. J. Physiol. 590, 441–446 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Koppel, N., Rekdal, V. M. & Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science 356, eaag2770 (2018).

    Article  PubMed Central  Google Scholar 

  9. Amar, J. et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54, 3055–3061 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Adami, J. G. On the bactericidal functions of the liver and the etiology of progressive hepatic cirrhosis. BMJ 2, 1215–1214 (1898).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nicholls, A. G. A simple method of demonstrating the presence of bacteria in the mesentery of normal animals. J. Med. Res. 11, 455–468.1 (1904).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bäckhed, F. Programming of host metabolism by the gut microbiota. Ann. Nutr. Metab. 58, 44–52 (2011).

    Article  PubMed  Google Scholar 

  14. Tan, C. C. S. et al. No evidence for a common blood microbiome based on a population study of 9,770 healthy humans. Nat. Microbiol. https://doi.org/10.1038/s41564-023-01350-w (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Païssé, S. et al. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 56, 1138–1147 (2016).

    Article  PubMed  Google Scholar 

  16. Castillo, D. J., Rifkin, R. F., Cowan, D. A. & Potgieter, M. The healthy human blood microbiome: fact or fiction? Front. Cell. Infect. Microbiol. 9, 148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McLaughlin, R. W. et al. Are there naturally occurring pleomorphic bacteria in the blood of healthy humans? J. Clin. Microbiol. 40, 4771–4775 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Villarroel, J., Donkin, I., Champion, C., Burcelin, R. & Barrès, R. Endurance training in humans modulates the bacterial DNA signature of skeletal muscle. Biomedicines 10, 64 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ha, C. W. Y. et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of cree** fat in humans. Cell 183, 666–683 (2020).

  20. Balmer, M. L. et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci. Transl. Med. 6, 237ra66 (2014).

    Article  PubMed  Google Scholar 

  21. Caly, W. R. & Strauss, E. A prospective study of bacterial infections in patients with cirrhosis. J. Hepatol. 18, 353–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Duan, Y. et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 575, 505–511 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anhê, F. F. et al. Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat. Metab. 2, 233–242 (2020).

    Article  PubMed  Google Scholar 

  24. Sookoian, S. et al. Intrahepatic bacterial metataxonomic signature in non-alcoholic fatty liver disease. Gut 69, 1483–1491 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Udayan, S. et al. Identification of gut bacteria such as Lactobacillus johnsonii that disseminate to systemic tissues of wild type and MyD88–/– mice. Gut Microbes 14, 2007743 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lluch, J. et al. The characterization of novel tissue microbiota using an optimized 16S metagenomic sequencing pipeline. PLoS ONE 10, e0142334 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Amar, J. et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes. EMBO Mol. Med. 3, 559–572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Udayappan, S. D. et al. Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLoS ONE 12, e0181693 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. He, Z. et al. Microbiota in mesenteric adipose tissue from Crohn’s disease promote colitis in mice. Microbiome 9, 228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Massier, L. et al. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut 69, 1796–1806 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Sun, J. et al. The visceral adipose tissue bacterial microbiota provides a signature of obesity based on inferred metagenomic functions. Int. J. Obes. 47, 1008–1022 (2023).

    Article  CAS  Google Scholar 

  33. Cicalese, L. et al. Acute pancreatitis and bacterial translocation. Dig. Dis. Sci. 46, 1127–1132 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Dervenis, C., Smailis, D. & Hatzitheoklitos, E. Bacterial translocation and its prevention in acute pancreatitis. J. Hepatobiliary Pancreat. Surg. 10, 415–418 (2003).

    Article  PubMed  Google Scholar 

  35. Miklossy, J., Martins, R., Darbinian, N., Khalili, K. & McGeer, P. L. Type 2 diabetes: local inflammation and direct effect of bacterial toxic components. Open Pathol. J. 2, 86–95 (2008).

  36. Gao, H. et al. Accumulation of microbial DNAs promotes to islet inflammation and β cell abnormalities in obesity in mice. Nat. Commun. 13, 565 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, X. -Y. et al. Kidney microbiota dysbiosis contributes to the development of hypertension. Gut Microbes 14, 2143220 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Errington, J. L-form bacteria, cell walls and the origins of life. Open Biol. 3, 120143 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zulian, A. et al. Adipose tissue microbiota in humans. Int. J. Obes. 40, 1643–1648 (2016).

    Article  CAS  Google Scholar 

  40. Giron, L. B. et al. Markers of fungal translocation are elevated during post-acute sequelae of SARS-CoV-2 and induce NF-κB signaling. JCI Insight 7, e160989 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dominy, S. S. et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 5, eaau3333 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schmidt, T. S. et al. Extensive transmission of microbes along the gastrointestinal tract. Elife 8, e42693 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gummesson, A. et al. Intestinal permeability is associated with visceral adiposity in healthy women. Obesity 19, 2280–2282 (2011).

    Article  PubMed  Google Scholar 

  44. Teixeira, T. F. S. et al. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin. Nutr. 31, 735–740 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Luther, J. et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell. Mol. Gastroenterol. Hepatol. 1, 222–232 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Michielan, A. & D’Incà, R. Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm. 2015, 628157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bruewer, M. et al. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J. Immunol. 171, 6164–6172 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Kanaya, T., Williams, I. R. & Ohno, H. Intestinal M cells: tireless samplers of enteric microbiota. Traffic 21, 34–44 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Regoli, M., Borghesi, C., Bertelli, E. & Nicoletti, C. Uptake of a gram-positive bacterium (Streptococcus pneumoniae R36a) by the M cells of rabbit Peyer’s patches. Ann. Anat. 177, 119–124 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Guerville, M. & Boudry, G. Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G1–G15 (2016).

    Article  PubMed  Google Scholar 

  51. Dean, P. & Kenny, B. Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein. Mol. Microbiol. 54, 665–675 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Caron, T. J., Scott, K. E., Fox, J. G. & Hagen, S. J. Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier. World J. Gastroenterol. 21, 11411–11427 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rossi, O., van Baarlen, P. & Wells, J. M. Host-recognition of pathogens and commensals in the mammalian intestine. in Between Pathogenicity and Commensalism (eds Dobrindt, U. et al.) 291–321 (Springer, 2013). https://doi.org/10.1007/82_2011_191

  54. Massier, L., Blüher, M., Kovacs, P. & Chakaroun, R. M. Impaired intestinal barrier and tissue bacteria: pathomechanisms for metabolic diseases. Front. Endocrinol. 12, 616506 (2021).

    Article  Google Scholar 

  55. Brandl, K., Kumar, V. & Eckmann, L. Gut-liver axis at the frontier of host–microbial interactions. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G413–G419 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Broadley, S. P. et al. Dual-track clearance of circulating bacteria balances rapid restoration of blood sterility with induction of adaptive immunity. Cell Host Microbe 20, 36–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Zeng, Z. et al. CRIg functions as a macrophage pattern recognition receptor to directly bind and capture blood-borne gram-positive bacteria. Cell Host Microbe 20, 99–106 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Levels, J. H., Abraham, P. R., van den Ende, A. & van Deventer, S. J. Distribution and kinetics of lipoprotein-bound endotoxin. Infect. Immun. 69, 2821–2828 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Takeshita, S., Nakatani, K., Tsujimoto, H., Kawamura, Y. & Sekine, I. Detection of circulating lipopolysaccharide-bound monocytes in children with gram-negative sepsis. J. Infect. Dis. 182, 1549–1552 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Roth, R. I., Levin, F. C. & Levin, J. Distribution of bacterial endotoxin in human and rabbit blood and effects of stroma-free hemoglobin. Infect. Immun. 61, 3209–3215 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Poschl, J. M. B., Leray, C., Ruef, P., Cazenave, J. P. & Linderkamp, O. Endotoxin binding to erythrocyte membrane and erythrocyte deformability in human sepsis and in vitro. Crit. Care Med. 31, 924–928 (2003).

    Article  PubMed  Google Scholar 

  62. Stahl, A. et al. Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood 108, 167–176 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yao, Z. et al. Blood-borne lipopolysaccharide is rapidly eliminated by liver sinusoidal endothelial cells via high-density lipoprotein. J. Immunol. 197, 2390–2399 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Topchiy, E. et al. Lipopolysaccharide is cleared from the circulation by hepatocytes via the low density lipoprotein receptor. PLoS ONE 11, e0155030 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hanslin, K. et al. The impact of the systemic inflammatory response on hepatic bacterial elimination in experimental abdominal sepsis. Intensive Care Med. Exp. 7, 52 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Queck, A. et al. Role of portal venous platelet activation in patients with decompensated cirrhosis and TIPS. Gut 69, 1535–1536 (2020).

    Article  PubMed  Google Scholar 

  67. Chelakkot, C., Ghim, J. & Ryu, S. H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 50, 1–9 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Bischoff, S. C. et al. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cortez-Gonzalez, X. et al. TLR9-independent activation of B lymphocytes by bacterial DNA. DNA Cell Biol. 25, 253–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Alvarez, M. E. et al. Neutrophil signaling pathways activated by bacterial DNA stimulation. J. Immunol. 177, 4037–4046 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Trevani, A. S. et al. Bacterial DNA activates human neutrophils by a CpG-independent pathway. Eur. J. Immunol. 33, 3164–3174 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Lin, Y. et al. The lipopolysaccharide-activated Toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes. J. Biol. Chem. 275, 24255–24263 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Seki, E., Park, E. & Fujimoto, J. Toll-like receptor signaling in liver regeneration, fibrosis and carcinogenesis. Hepatol. Res. 41, 597–610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Garay-Malpartida, H. M. et al. Toll-like receptor 4 (TLR4) expression in human and murine pancreatic beta-cells affects cell viability and insulin homeostasis. BMC Immunol. 12, 18 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reyna, S. M. et al. Elevated Toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes 57, 2595–2602 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liang, H., Hussey, S. E., Sanchez-Avila, A., Tantiwong, P. & Musi, N. Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS ONE 8, e63983 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Frisard, M. I. et al. Toll-like receptor 4 modulates skeletal muscle substrate metabolism. Am. J. Physiol. Endocrinol. Metab. 298, E988–E998 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Frisard, M. I. et al. Low levels of lipopolysaccharide modulate mitochondrial oxygen consumption in skeletal muscle. Metab. Clin. Exp. 64, 416–427 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Amyot, J., Semache, M., Ferdaoussi, M., Fontes, G. & Poitout, V. Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-like receptor-4 and NF-κB signalling. PLoS ONE 7, e36200 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. He, W. et al. TLR4 triggered complex inflammation in human pancreatic islets. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 86–97 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Vives-Pi, M. et al. Evidence of expression of endotoxin receptors CD14, Toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells. Clin. Exp. Immunol. 133, 208–218 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vila, I. K. et al. Immune cell Toll-like receptor 4 mediates the development of obesity- and endotoxemia-associated adipose tissue fibrosis. Cell Rep. 7, 1116–1129 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Chiadak, J. D. et al. Lipopolysaccharide modifies glycerol permeability and metabolism in 3T3-L1 adipocytes. Int. J. Mol. Sci. 18, 2566 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Choi, Y. et al. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Sci. Rep. 5, 15878 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu, W., Yang, G., Liu, P., Jiang, X. & **n, Y. Modulation of adipose tissue metabolism by microbial-derived metabolites. Front. Microbiol. 13, 1031498 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Spivak, I., Fluhr, L. & Elinav, E. Local and systemic effects of microbiome-derived metabolites. EMBO Rep. 23, e55664 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lauder, A. P. et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 4, 29 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kennedy, K. M. et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 613, 639–649 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Olomu, I. N. et al. Elimination of ‘kitome’ and ‘splashome’ contamination results in lack of detection of a unique placental microbiome. BMC Microbiol. 20, 157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Read, S. J. Recovery efficiencies of nucleic acid extraction kits as measured by quantitative LightCyclerTM PCR. Mol. Pathol. 54, 86–90 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Polz, M. F. & Cavanaugh, C. M. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol 64, 3724–3730 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marchesi, J. R. et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64, 795–799 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Novitsky, T. J., Schmidt-Gengenbach, J. & Remillard, J. F. Factors affecting recovery of endotoxin adsorbed to container surfaces. J. Parenter. Sci. Technol. 40, 284–286 (1986).

    CAS  PubMed  Google Scholar 

  94. Boutagy, N. E., McMillan, R. P., Frisard, M. I. & Hulver, M. W. Metabolic endotoxemia with obesity: is it real and is it relevant? Biochimie 124, 11–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Hurley, J. C. Endotoxemia: methods of detection and clinical correlates. Clin. Microbiol. Rev. 8, 268–292 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Erb-Downward, J. R. et al. Critical relevance of stochastic effects on low-bacterial-biomass 16S rRNA gene analysis. mBio 11, e00258-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Karstens, L. et al. Controlling for contaminants in low-biomass 16S rRNA gene sequencing experiments. mSystems https://doi.org/10.1128/msystems.00290-19 (2019).

  98. Berry, D. et al. Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME J. 6, 2091–2106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Batani, G., Bayer, K., Böge, J., Hentschel, U. & Thomas, T. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria. Sci. Rep. 9, 18618 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Young, A. P., Jackson, D. J. & Wyeth, R. C. A technical review and guide to RNA fluorescence in situ hybridization. PeerJ 8, e8806 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ng, K. M. & Tropini, C. Visualization of gut microbiota-host interactions via fluorescence in situ hybridization, lectin staining, and imaging. J. Vis. Exp. https://doi.org/10.3791/62646 (2021).

    Article  PubMed  Google Scholar 

  102. Amann, R. & Fuchs, B. M. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 6, 339–348 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Morono, Y. & Inagaki, F. Chapter three - analysis of low-biomass microbial communities in the deep biosphere. in Advances in Applied Microbiology (eds Sariaslani, S. et al.) vol. 95, 149–178 (Academic Press, 2016).

  104. Schippers, A. et al. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433, 861–864 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Hoshino, T. et al. Atribacteria from the subseafloor sedimentary biosphere disperse to the hydrosphere through submarine mud volcanoes. Front. Microbiol. 8, 1135 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chakaroun, R. M. et al. Circulating bacterial signature is linked to metabolic disease and shifts with metabolic alleviation after bariatric surgery. Genome Med. 13, 105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra65 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. He, Q. et al. The meconium microbiota shares more features with the amniotic fluid microbiota than the maternal fecal and vaginal microbiota. Gut Microbes 12, 1794266 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Stinson, L. et al. Comparison of bacterial DNA profiles in mid-trimester amniotic fluid samples from preterm and term deliveries. Front. Microbiol. 11, 415 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bolte, E. E., Moorshead, D. & Aagaard, K. M. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med. 14, 4 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Prince, A. L. et al. The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am. J. Obstet. Gynecol. 214, 627.e1–627.e16 (2016).

    Article  PubMed  Google Scholar 

  112. Mishra, A. et al. Microbial exposure during early human development primes fetal immune cells. Cell 184, 3394–3409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rackaityte, E. et al. Viable bacterial colonization is highly limited in the human intestine in utero. Nat. Med. 26, 599–607 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kennedy, K. M. et al. Fetal meconium does not have a detectable microbiota before birth. Nat. Microbiol. 6, 865–873 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Theis, K. R. et al. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am. J. Obstet. Gynecol. 220, 267.e1–267.e39 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Blaser, M. J. et al. Lessons learned from the prenatal microbiome controversy. Microbiome 9, 8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bushman, F. D. De-discovery of the placenta microbiome. Am. J. Obstet. Gynecol. 220, 213–214 (2019).

    Article  PubMed  Google Scholar 

  120. Perez-Muñoz, M. E., Arrieta, M. -C., Ramer-Tait, A. E. & Walter, J. A critical assessment of the ‘sterile womb’ and ‘in utero colonization’ hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5, 48 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat. Med. 27, 1885–1892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Musat, N., Musat, F., Weber, P. K. & Pett-Ridge, J. Tracking microbial interactions with NanoSIMS. Curr. Opin. Biotechnol. 41, 114–121 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Berry, D. & Loy, A. Stable-isotope probing of human and animal microbiome function. Trends Microbiol. 26, 999–1007 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hatzenpichler, R., Krukenberg, V., Spietz, R. L. & Jay, Z. J. Next-generation physiology approaches to study microbiome function at single cell level. Nat. Rev. Microbiol. 18, 241–256 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lechene, C. P., Luyten, Y., McMahon, G. & Distel, D. L. Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317, 1563–1566 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Berry, D. et al. Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proc. Natl Acad. Sci. USA 110, 4720–4725 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Guillermier, C., Poczatek, J. C., Taylor, W. R. & Steinhauser, M. L. Quantitative imaging of deuterated metabolic tracers in biological tissues with nanoscale secondary ion mass spectrometry. Int. J. Mass Spectrom. 422, 42–50 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Steinhauser, M. L. & Lechene, C. P. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry. Semin. Cell Dev. Biol. 24, 661–667 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Decelle, J. et al. Subcellular chemical imaging: new avenues in cell biology. Trends Cell Biol. 30, 173–188 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Decelle, J. et al. Subcellular architecture and metabolic connection in the planktonic photosymbiosis between Collodaria (radiolarians) and their microalgae. Environ. Microbiol. 23, 6569–6586 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Gyngard, F., Trakimas, L. & Steinhauser, M. L. High-fidelity quantification of cell cycle activity with multi-isotope imaging mass spectrometry. in Cardiac Regeneration: Methods and Protocols (eds Poss, K. D. et al.) 257–268 (Springer, 2021). https://doi.org/10.1007/978-1-0716-0668-1_19

  133. Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl Acad. Sci. USA 105, 17861–17866 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chakaroun, R., Massier, L., Musat, N. & Kovacs, P. New paradigms for familiar diseases: lessons learned on circulatory bacterial signatures in cardiometabolic diseases. Exp. Clin. Endocrinol. Diabetes 130, 313–326 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Hülpüsch, C. et al. Benchmarking MicrobIEM – a user-friendly tool for decontamination of microbiome sequencing data. BMC Biol. 21, 269 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhong, Z. -P. et al. Clean low-biomass procedures and their application to ancient ice core microorganisms. Front. Microbiol. 9, 1094 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Clokie, B. G. J. et al. Optimization of low-biomass sample collection and quantitative PCR-Based titration impact 16S rRNA microbiome resolution. Microbiol. Spectr. 10, e0225522 (2022).

    Article  PubMed  Google Scholar 

  138. Hasrat, R. et al. Benchmarking laboratory processes to characterise low-biomass respiratory microbiota. Sci. Rep. 11, 17148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Prudent, E. & Raoult, D. Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria. FEMS Microbiol Rev. 43, 88–107 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Narendra, D. P. & Steinhauser, M. L. Metabolic analysis at the nanoscale with multi-isotope imaging mass spectrometry (MIMS). Curr. Protoc. Cell Biol. 88, e111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Morono, Y. Accessing the energy-limited and sparsely populated deep biosphere: achievements and ongoing challenges of available technologies. Prog. Earth Planet. Sci. 10, 18 (2023).

    Article  Google Scholar 

  142. Vester, J. K., Glaring, M. A. & Stougaard, P. Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 19, 17–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Busch, W. Aus der Sitzung der medicinischen Section vom 13 November 1867. Berl. Klin. Wochenschr. 5, 137 (1868).

    Google Scholar 

  144. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ghaddar, B. et al. Tumor microbiome links cellular programs and immunity in pancreatic cancer. Cancer Cell 40, 1240–1253 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Narunsky-Haziza, L. et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 185, 3789–3806 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dohlman, A. B. et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell 185, 3807–3822 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Debelius, J. W. et al. The local tumor microbiome is associated with survival in late-stage colorectal cancer patients. Microbiol. Spectr. 11, e0506622 (2023).

    Article  PubMed  Google Scholar 

  150. Chowdhury, S. et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat. Med. 25, 1057–1063 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chen, Y. E. et al. Engineered skin bacteria induce antitumor T cell responses against melanoma. Science 380, 203–210 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gihawi, A., Cooper, C. S. & Brewer, D. S. Caution regarding the specificities of pan-cancer microbial structure. Micro. Genom. 9, mgen001088 (2023).

    Google Scholar 

  154. Gihawi, A. et al. Major data analysis errors invalidate cancer microbiome findings. mBio 14, e0160723 (2023).

    Article  PubMed  Google Scholar 

  155. Offord, C. ‘Major errors’ alleged in landmark study that used microbes to identify cancers. https://www.science.org/content/article/major-errors-alleged-landmark-study-used-microbes-identify-cancers (2023).

  156. Komiya, Y. et al. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut 68, 1335–1337 (2019).

    Article  PubMed  Google Scholar 

  157. Kartal, E. et al. A faecal microbiota signature with high specificity for pancreatic cancer. Gut 71, 1359–1372 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Chakaroun, R. M., Olsson, L. M. & Bäckhed, F. The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nat. Rev. Cardiol. 20, 217–235 (2023).

    Article  PubMed  Google Scholar 

  159. Woo, A. Y. M. et al. Targeting the human gut microbiome with small-molecule inhibitors. Nat. Rev. Chem. https://doi.org/10.1038/s41570-023-00471-4 (2023).

  160. Aldubayan, M. A. et al. Supplementation with inulin-type fructans affects gut microbiota and attenuates some of the cardiometabolic benefits of a plant-based diet in individuals with overweight or obesity. Front. Nutr. 10, 1108088 (2023).

  161. Pedersen, S. S. et al. Targeted delivery of butyrate improves glucose homeostasis, reduces hepatic lipid accumulation and inflammation in db/db mice. Int. J. Mol. Sci. 24, 4533 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Horowitz, A., Chanez-Paredes, S. D., Haest, X. & Turner, J. R. Paracellular permeability and tight junction regulation in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-023-00766-3 (2023).

  163. Jensen, S. K. et al. Rewiring host-microbe interactions and barrier function during gastrointestinal inflammation. Gastroenterol. Rep. 10, goac008 (2022).

    Article  Google Scholar 

  164. Huang, Z. et al. Antibody neutralization of microbiota-derived circulating peptidoglycan dampens inflammation and ameliorates autoimmunity. Nat. Microbiol. 4, 766–773 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Wheeler, R. et al. Microbiota-induced active translocation of peptidoglycan across the intestinal barrier dictates its within-host dissemination. Proc. Natl Acad. Sci. USA 120, e2209936120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ohto, U. Activation and regulation mechanisms of NOD-like receptors based on structural biology. Front Immunol. 13, 953530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.M. was supported by a postdoctoral grant from the Swedish Society for Medical Research (SSMF) and a starting grant from the Swedish Research Council (2023-02839). N.M. was funded by the Novo Nordisk Foundation through an NNF Young Investigator Award, grant NNF22OC0071609 ReFuel. R.C.’s research work was supported by a Walter Benjamin Fellowship grant from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). P.K.’s research work was supported by a grant from the DFG (Projektnummer 209933838 – SFB 1052; B3). We thank T.S. Schmidt (EMBL, Heidelberg, Germany) for rewarding scientific discussions and providing scientific material relating to the tumour microbiome section. We thank D.R. Marquez (@darwid_ilustration) for the contribution to our graphical illustrations.

Author information

Authors and Affiliations

Authors

Contributions

L.M., R.C. and P.K. designed the manuscript; L.M. drafted the figures; L.M., R.C., P.K. and N.M. contributed to the literature review; L.M., R.C., P.K. and N.M. wrote the manuscript; M.S. and V.T. edited and discussed the manuscript.

Corresponding authors

Correspondence to Rima Chakaroun or Peter Kovacs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Andre Marette and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massier, L., Musat, N., Stumvoll, M. et al. Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges. Nat Metab (2024). https://doi.org/10.1038/s42255-024-01065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s42255-024-01065-0

  • Springer Nature Limited

Navigation