Introduction

The interest of develo** new x-ray sources and/or improving their performances in terms of brightness, stability, and compactness is still growing since decades. This is strongly motivated by applications of x-ray sources for imaging and related applied developments to biology, medicine and material science. In particular, the advent of synchrotron radiation sources in the seventies as well as the development of optical components for x-rays, definitively allowed to transfer the phase contrast imaging (PCI) techniques from the visible spectral range to the x-ray one. Phase contrast x-ray imaging is sensitive to phase shift induced by an object placed in the x-ray path and does not rely on its absorption. Thus, it can image weakly absorbing materials, such as carbon-based materials and biological objects. In addition, it should be noted that the sensitivity of absorption contrast decreases as the photon energy (E) increases1 as E–3, whereas that of phase contrast methods decreases only as E–2. Therefore, phase contrast methods are more sensitive at high photon energies (E = 10 to 100 keV), compared to absorption methods. In that case, for comparable image quality, the absorbed x-ray dose is smaller than with conventional radiography. Challenges addressed by hard x-ray PCI are numerous such as the detection of complex damages in composite materials

Figure 4
figure 4

X-ray phase images based on Paganin phase retrieval algorithm50,51. (a–c) are retrieved from the raw images presented in Fig. 3 (a–c). (a) for I = 2.7 × 1017 W/cm2, (b) for I = 1.0 × 1018 W/cm2, (c) for I = 7.2 × 1018 W/cm2.

Figure 5
figure 5

Phase grey histogram of region of interest from images (a–c) of Fig. 4. Error bars are correlated to the non-uniform response of the detector and take into account the (Ls/\({{\rm{L}}}_{\perp }\))body ratios. They are similar for each point of the corresponding histogram.

To explore the limit of ASUR laser source, an ultimate x-ray PCI experiment has been carried out at the maximum laser intensity of I = 1.3 × 1019 W/cm2. The CCD camera is kept at 90 cm from the wasp and the raw image shown in Fig. 6a is obtained with an accumulation of only 200 x-ray pulses (2 seconds with 100 Hz driver laser). The effective source size of the x-ray source is 52 µm.

Figure 6
figure 6

(a) Raw x-ray phase contrast image of the wasp acquired at I = 1.3 × 1019 W/cm2 and with 200 x-ray pulses. (b) Line profile of the signal perpendicular to the edge of a thorax zone. (c) Corresponding x-ray retrieved phase image.

Compared to the previous images of Fig. 3 the quality of the raw image is undeniably degraded with less visible details. Nevertheless, the signal of the edge contrast still exceeds the noise level (Fig. 6b). This signal value is sufficient to extract a phase image shown in Fig. 6c for the air/wasp interface. For the body structure of the wasp, less phase curvature signal is also visible, involving a degraded phase extraction compared to previous images in Fig. 4, with an average grey value of 30 rad and σ = 15 rad (orange ROI in Fig. 6c). Even so, these last results demonstrate good applicability of our x-ray source and 100 Hz TW-class laser driver for phase-contrast imaging at high intensity and short exposure time.