Log in

High-throughput single-cell transcriptomics of bacteria using combinatorial barcoding

  • Protocol
  • Published:

From Nature Protocols

View current issue Submit your manuscript

Abstract

Microbial split-pool ligation transcriptomics (microSPLiT) is a high-throughput single-cell RNA sequencing method for bacteria. With four combinatorial barcoding rounds, microSPLiT can profile transcriptional states in hundreds of thousands of Gram-negative and Gram-positive bacteria in a single experiment without specialized equipment. As bacterial samples are fixed and permeabilized before barcoding, they can be collected and stored ahead of time. During the first barcoding round, the fixed and permeabilized bacteria are distributed into a 96-well plate, where their transcripts are reverse transcribed into cDNA and labeled with the first well-specific barcode inside the cells. The cells are mixed and redistributed two more times into new 96-well plates, where the second and third barcodes are appended to the cDNA via in-cell ligation reactions. Finally, the cells are mixed and divided into aliquot sub-libraries, which can be stored until future use or prepared for sequencing with the addition of a fourth barcode. It takes 4 days to generate sequencing-ready libraries, including 1 day for collection and overnight fixation of samples. The standard plate setup enables single-cell transcriptional profiling of up to 1 million bacterial cells and up to 96 samples in a single barcoding experiment, with the possibility of expansion by adding barcoding rounds. The protocol requires experience in basic molecular biology techniques, handling of bacterial samples and preparation of DNA libraries for next-generation sequencing. It can be performed by experienced undergraduate or graduate students. Data analysis requires access to computing resources, familiarity with Unix command line and basic experience with Python or R.

Key points

  • Through four rounds of combinatorial barcoding, this low-cost and high-throughput single-cell RNA sequencing method enables transcriptomic analysis of individual bacterial cells and the detection of phenotypically distinct subpopulations.

  • Conditions for cell wall digestion, membrane permeabilization and the barcoding procedure are optimized to profile tens of thousands of bacterial cells in a single bench-based barcoding experiment without the need for a dedicated instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1: MicroSPLiT in-cell cDNA barcoding scheme.
Fig. 2: MicroSPLiT sequencing library preparation.
Fig. 3: Suggested cell numbers at different stages of microSPLiT.
Fig. 4: Representative B. subtilis cells throughout the course of a successful microSPLiT experiment.
Fig. 5: Library quantification by using Agilent 4200 TapeStation Screentapes.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research publication (https://doi.org/10.1126/science.aba5257). The raw sequencing files are available at the Sequence Read Archive: GSM4594094, GSM4594095 and GSM4594096. Processed data were submitted to Gene Expression Omnibus, with accession number GSE151940.

References

  1. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Avery, S. V. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 4, 577–587 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Leisner, M., Stingl, K., Frey, E. & Maier, B. Stochastic switching to competence. Curr. Opin. Microbiol. 11, 553–559 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Arnoldini, M. et al. Bistable expression of virulence genes in Salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biol. 12, e1001928 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rosenthal, A. Z. et al. Metabolic interactions between dynamic bacterial subpopulations. eLife 7, e33099 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Real, E. et al. A single-cell atlas of Plasmodium falciparum transmission through the mosquito. Nat. Commun. 12, 1–13 (2021).

    Article  Google Scholar 

  7. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones, R. C. et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Blattman, S. B., Jiang, W., Jiang, W., Oikonomou, P. & Tavazoie, S. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing. Nat. Microbiol. 5, 1192–1201 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuchina, A. et al. Microbial single-cell RNA sequencing by split-pool barcoding. Science 371, eaba5257 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wendisch, V. F. et al. Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays. Anal. Biochem. 290, 205–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Kaminow, B., Yunusov, D. & Dobin, A. STARsolo: accurate, fast and versatile map**/quantification of single-cell and single-nucleus RNA-seq data. Preprint at https://www.biorxiv.org/content/10.1101/2021.05.05.442755v1 (2021).

  14. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosenberg, A. B. et al. Single-cell profiling of the develo** mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bagnoli, J. W. et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nat. Commun. 9, 2937 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nadezhdin, E., Murphy, N., Dalchau, N., Phillips, A. & Locke, J. C. W. Stochastic pulsing of gene expression enables the generation of spatial patterns in Bacillus subtilis biofilms. Nat. Commun. 11, 1–12 (2020).

    Article  Google Scholar 

  19. Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, eabi4882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209 (2003).

    Article  Google Scholar 

  21. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Stapels, D. A. C. et al. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 362, 1156–1160 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen, H., Tran, D., Tran, B., Pehlivan, B. & Nguyen, T. A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data. Brief. Bioinform. 22, 1–15 (2021).

    Article  Google Scholar 

  24. Wang, B. et al. Single-cell massively-parallel multiplexed microbial sequencing (M3-seq) identifies rare bacterial populations and profiles phage infection. Nat. Microbiol. 8, 1846–1862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, P. et al. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell 186, 877–891.e14 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mcnulty, R. et al. Probe-based bacterial single-cell RNA sequencing predicts toxin regulation. Nat. Microbiol. 8, 934–945 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, Z. et al. Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq. Nat. Commun. 14, 1–12 (2023).

    Google Scholar 

  28. Imdahl, F., Vafadarnejad, E., Homberger, C., Saliba, A. E. & Vogel, J. Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria. Nat. Microbiol. 5, 1202–1206 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Espejo, R. T. & Plaza, N. Multiple ribosomal RNA operons in bacteria; their concerted evolution and potential consequences on the rate of evolution of their 16S rRNA. Front. Microbiol. 9, 338498 (2018).

    Article  Google Scholar 

  30. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Homberger, C., Barquist, L. & Vogel, J. Ushering in a new era of single-cell transcriptomics in bacteria. Microlife 3, uqac020 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Martin, B. K. et al. Optimized single-nucleus transcriptional profiling by combinatorial indexing. Nat. Protoc. 18, 188–207 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schnabel, Z. E. The estimation of the total fish population of a lake. Am. Math. Mon. 45, 348–352 (1938).

    Google Scholar 

Download references

Acknowledgements

We thank Nikolay Burnaevskiy for help with setting up the STARsolo workflow. A.K. and G.S. acknowledge support from the Department of Energy Office of Science, Biological and Environmental Research (BER) Program, Grant DE-SC0023091. A.K. is supported by the National Institute of Dental and Craniofacial Research of the National Institutes of Health (NIH) Grant R21DE032890 and from the National Institute of General Medical Sciences of the NIH Grant R35GM150994.

Author information

Authors and Affiliations

Authors

Contributions

K.D.G., S.N.S. and A.K. tested and formalized the microSPLiT protocol and produced the presented figures. L.M.B., L.P., R.W.D., G.S. and A.K. primarily developed the microSPLiT method. K.D.G., S.N.S., C.M.R., A.B.R and M.H. optimized sequencing library preparation. K.D.G. and A.K. implemented the sequencing data analysis workflow. K.D.G., S.N.S. and A.K. wrote the manuscript. A.K. supervised the work.

Corresponding author

Correspondence to Anna Kuchina.

Ethics declarations

Competing interests

A.K., L.M.B., R.W.D. and G.S. are inventors on a patent application for microSPLiT filed by the University of Washington. C.M.R., A.B.R and G.S. are cofounders and shareholders of Parse Biosciences, an scRNA-seq company.

Peer review

Peer review information

Nature Protocols thanks Anne-Kristin Kaster and Lars Barquist for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Kuchina, A. et al. Science 371, eaba5257 (2020): https://doi.org/10.1126/science.aba5257

Extended data

Extended Data Fig. 1 Schematic of a microSPLiT sequencing construct.

Only the polyA-primed construct is shown as an example. The random hexamer-primed construct would harbor six random nucleotides in place of the dT15 sequence.

Extended Data Fig. 2 Example data before filtering, shown as a barcode-rank plot.

A red line indicates a chosen threshold for filtering out low-quality cells and debris. a, A high-resolution experiment; data were filtered at 400 total UMIs/cell. Before filtering: 884,736 barcode combinations; after filtering: 60,831 combinations, corresponding to cells. b, A poor-resolution experiment; data were filtered at 350 total UMIs/cell. Before filtering: 884,736 barcode combinations; after filtering: 644 combinations.

Supplementary information

Reporting Summary

Supplementary Tables 1–4

Supplementary Table 1: cost estimate of microSPLiT. Supplementary Table 2: cost estimate and comparison of high-throughput bacterial scRNA-seq methods. Supplementary Table 3: sequences of oligonucleotides and source barcode plates used in microSPLiT. Supplementary Table 4: barcode sequence files for STARsolo analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaisser, K.D., Skloss, S.N., Brettner, L.M. et al. High-throughput single-cell transcriptomics of bacteria using combinatorial barcoding. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01007-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-01007-w

  • Springer Nature Limited

Navigation