Log in

Wound management materials and technologies from bench to bedside and beyond

  • Review Article
  • Published:

From Nature Reviews Materials

View current issue Sign up to alerts

Abstract

Chronic wounds represent a major global health problem, causing staggering economic and social burdens. The pursuit of effective wound healing strategies demands a multidisciplinary approach, and advances in material sciences and bioengineering have paved the way for the development of novel wound healing biomaterials and technologies. In this Review, we provide an overview of the history and challenges of wound management and highlight the current state of the art in wound healing biomaterials alongside the emerging technologies poised to transform the landscape of chronic wound treatment and monitoring. Moreover, we discuss the clinical and commercial considerations associated with wound healing strategies, including the regulatory pathways and key steps in the translational process. Furthermore, we highlight existing translational gaps and offer a nuanced understanding of the challenges that persist in translating innovative concepts into mainstream clinical practices. Continued innovations and interdisciplinary collaboration will pave the way for better wound care outcomes and potentially markedly improved quality of life for a steadily increasing and ageing population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1: Chronic wound healing and management process.
Fig. 2: A timeline of technology development in chronic wound management.
Fig. 3: Translational materials for wound treatment.
Fig. 4: Materials and technologies for wound analysing and monitoring.

Similar content being viewed by others

References

  1. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Eriksson, E. et al. Chronic wounds: treatment consensus. Wound Repair Regen. 30, 156–171 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Armstrong, D. G. & Gurtner, G. C. A histologically hostile environment made more hospitable? Nat. Rev. Endocrinol. 14, 511–512 (2018).

    Article  PubMed  Google Scholar 

  4. Sen, C. K. Human wounds and its burden: an updated compendium of estimates. Adv. Wound Care 8, 39–48 (2019).

    Article  Google Scholar 

  5. Nussbaum, S. R. et al. An economic evaluation of the impact, cost, and Medicare policy implications of chronic nonhealing wounds. Value Health 21, 27–32 (2018).

    Article  PubMed  Google Scholar 

  6. McDermott, K., Fang, M., Boulton, A. J., Selvin, E. & Hicks, C. W. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes Care 46, 209–221 (2023).

    Article  PubMed  Google Scholar 

  7. Sharma, A., Sharma, D. & Zhao, F. Updates on recent clinical assessment of commercial chronic wound care products. Adv. Healthc. Mater. 12, 2300556 (2023).

    Article  CAS  Google Scholar 

  8. Kalidasan, V. et al. Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat. Biomed. Eng. 5, 1217–1227 (2021).

    Article  PubMed  Google Scholar 

  9. Wang, C., Shirzaei Sani, E. & Gao, W. Wearable bioelectronics for chronic wound management. Adv. Funct. Mater. 32, 2111022 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Derakhshandeh, H., Kashaf, S. S., Aghabaglou, F., Ghanavati, I. O. & Tamayol, A. Smart bandages: the future of wound care. Trends Biotechnol. 36, 1259–1274 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Farahani, M. & Shafiee, A. Wound healing: from passive to smart dressings. Adv. Healthc. Mater. 10, 2100477 (2021).

    Article  CAS  Google Scholar 

  13. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Nan, K. et al. Mucosa-interfacing electronics. Nat. Rev. Mater. 7, 908–925 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shubham, P. et al. Wearable electronics for skin wound monitoring and healing. Soft Sci. 2, 9 (2022).

    Article  Google Scholar 

  16. Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Global Wound Care Market by Product (Dressings (Foam, Hydrocolloid, Collagen), Devices (NPWT, Debridement), Biological Skin Substitutes, Sutures, Staplers), Wounds (Traumatic, Surgical, Burns), End User (Hospitals, Clinics), and Region — Global Forecast to 2028 (Markets and Markets, 2023).

  18. Medicare Severe Wound Care (United States Government Accountability Office, 2021).

  19. Baquerizo Nole, K. L. et al. Wound research funding from alternative sources of federal funds in 2012. Wound Repair Regen. 22, 295–300 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sen, C. K. Human wound and its burden: updated 2022 compendium of estimates. Adv. Wound Care 12, 657–670 (2023).

    Article  Google Scholar 

  21. Yuk, H., Wu, J. & Zhao, X. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 7, 935–952 (2022).

    Article  CAS  Google Scholar 

  22. Brown, M. S., Ashley, B. & Koh, A. Wearable technology for chronic wound monitoring: current dressings, advancements, and future prospects. Front. Bioeng. Biotechnol. 6, 47 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Discher, D. E., Janmey, P. & Wang, Y.-L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. McElvain, K., Klister, J., Ebben, A., Gopalakrishnan, S. & Dabagh, M. Impact of wound dressing on mechanotransduction within tissues of chronic wounds. Biomedicines 10, 3080 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Theocharidis, G. et al. A strain-programmed patch for the healing of diabetic wounds. Nat. Biomed. Eng. 6, 1118–1133 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Jiang, S. et al. Breathable, antifreezing, mechanically skin-like hydrogel textile wound dressings with dual antibacterial mechanisms. Bioact. Mater. 21, 313–323 (2023).

    CAS  PubMed  Google Scholar 

  30. Langer, V., Bhandari, P. S., Rajagopalan, S. & Mukherjee, M. K. Negative pressure wound therapy as an adjunct in healing of chronic wounds. Int. Wound J. 12, 436–442 (2015).

    Article  PubMed  Google Scholar 

  31. Shi, L., Liu, X., Wang, W., Jiang, L. & Wang, S. A self-pum** dressing for draining excessive biofluid around wounds. Adv. Mater. 31, 1804187 (2019).

    Article  Google Scholar 

  32. Negut, I., Dorcioman, G. & Grumezescu, V. Scaffolds for wound healing applications. Polymers 12, 2010 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nair, P. D. & Thomas, L. V. A nonadherent chitosan-polyvinyl alcohol absorbent wound dressing prepared via controlled freeze–dry technology. Int. J. Biol. Macromol. 150, 129–140 (2020).

    Article  PubMed  Google Scholar 

  34. Wu, J. et al. An off-the-shelf bioadhesive patch for sutureless repair of gastrointestinal defects. Sci. Transl. Med. 14, eabh2857 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Guo, B., Dong, R., Liang, Y. & Li, M. Haemostatic materials for wound healing applications. Nat. Rev. Chem. 5, 773–791 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Yuk, H. et al. Rapid and coagulation-independent haemostatic sealing by a paste inspired by barnacle glue. Nat. Biomed. Eng. 5, 1131–1142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gaharwar, A. K. et al. Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8, 9833–9842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao, X. et al. Polysaccharide-based adhesive antibacterial and self-healing hydrogel for sealing hemostasis. Biomacromolecules 23, 5106–5115 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Briquez, P. S., Clegg, L. E., Martino, M. M., Gabhann, F. M. & Hubbell, J. A. Design principles for therapeutic angiogenic materials. Nat. Rev. Mater. 1, 15006 (2016).

    Article  CAS  Google Scholar 

  40. Preman, N. K. et al. Bioresponsive supramolecular hydrogels for hemostasis, infection control and accelerated dermal wound healing. J. Mater. Chem. B 8, 8585–8598 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Falanga, V. et al. Chronic wounds. Nat. Rev. Dis. Primers 8, 50 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Latif, A. et al. Microparticles decorated with cell-instructive surface chemistries actively promote wound healing. Adv. Mater. https://doi.org/10.1002/adma.202208364 (2022).

  43. Griffin, D. R. et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat. Mater. 20, 560–569 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Tu, Z. et al. Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 7, 557–574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnson, J. et al. First-in-human clinical trial of allogeneic, platelet-derived extracellular vesicles as a potential therapeutic for delayed wound healing. J. Extracell. Vesicles 12, e12332 (2023).

    Article  PubMed  Google Scholar 

  46. Yao, G. et al. A programmable and skin temperature-activated electromechanical synergistic dressing for effective wound healing. Sci. Adv. 8, eabl8379 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brown, S. Clinical antimicrobial photodynamic therapy: phase II studies in chronic wounds. J. Natl Compr. Cancer Netw. 10, S80–S83 (2012).

    Article  Google Scholar 

  48. Lee, S. Y. et al. Combinatorial wound healing therapy using adhesive nanofibrous membrane equipped with wearable LED patches for photobiomodulation. Sci. Adv. 8, eabn1646 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Armstrong, D. G. & Lavery, L. A. Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomised controlled trial. Lancet 366, 1704–1710 (2005).

    Article  PubMed  Google Scholar 

  50. Pasek, J., Szajkowski, S. & Cieślar, G. Application of topical hyperbaric oxygen therapy and medical active dressings in the treatment of arterial leg ulcers — a pilot study. Sensors 23, 5582 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stone, R. C. et al. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers. Sci. Transl. Med. 9, eaaf8611 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kang, H. et al. Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem. Rev. 119, 664–699 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, Y. & Shi, J. Antioxidative nanomaterials and biomedical applications. Nano Today 27, 146–177 (2019).

    Article  CAS  Google Scholar 

  54. Huang, T. et al. Glucose oxidase and Fe(3)O(4)/TiO(2)/Ag(3)PO(4) co-embedded biomimetic mineralization hydrogels as controllable ROS generators for accelerating diabetic wound healing. J. Mater. Chem. B 9, 6190–6200 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, J. et al. Tailored hydrogel delivering niobium carbide boosts ROS-scavenging and antimicrobial activities for diabetic wound healing. Small 18, 2201300 (2022).

    Article  CAS  Google Scholar 

  56. Hartmann, C. A., Rode, H. & Kramer, B. Acticoat™ stimulates inflammation, but does not delay healing, in acute full-thickness excisional wounds. Int. Wound J. 13, 1344–1348 (2016).

    Article  PubMed  Google Scholar 

  57. Yao, B. et al. Ultrastrong, highly conductive and capacitive hydrogel electrode for electron–ion transduction. Matter 5, 4407–4424 (2022).

    Article  CAS  Google Scholar 

  58. Yoshikawa, Y. et al. Monophasic pulsed microcurrent of 1–8 Hz increases the number of human dermal fibroblasts. Prog. Rehabil. Med. 1, 20160005 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Magnoni, C. et al. Electrical stimulation as adjuvant treatment for chronic leg ulcers of different aetiology: an RCT. J. Wound Care 22, 525–533 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Rabbani, M., Rahman, E., Powner, M. B. & Triantis, I. F. Making sense of electrical stimulation: a meta-analysis for wound healing. Ann. Biomed. Eng. 52, 153–177 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang, C. et al. Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing. Biomaterials 285, 121479 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Long, Y. et al. Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. ACS Nano 12, 12533–12540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, X. et al. MiR-21 regulating PVT1/PTEN/IL-17 axis towards the treatment of infectious diabetic wound healing by modified GO-derived biomaterial in mouse models. J. Nanobiotechnol. 20, 309 (2022).

    Article  CAS  Google Scholar 

  64. Li, Y., Zhou, X., Sarkar, B., Gagnon-Lafrenais, N. & Cicoira, F. Recent progress on self-healable conducting polymers. Adv. Mater. 34, e2108932 (2022).

    Article  PubMed  Google Scholar 

  65. Kai, H., Suda, W., Yoshida, S. & Nishizawa, M. Organic electrochromic timer for enzymatic skin patches. Biosens. Bioelectron. 123, 108–113 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Luo, B. et al. Nonadjacent wireless electrotherapy for tissue repair by a 3D-printed bioresorbable fully soft triboelectric nanogenerator. Nano Lett. 23, 2927–2937 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Jia, M. & Rolandi, M. Soft and ion-conducting materials in bioelectronics: from conducting polymers to hydrogels. Adv. Healthc. Mater. 9, 1901372 (2020).

    Article  CAS  Google Scholar 

  68. Li, S., Wang, L., Zheng, W., Yang, G. & Jiang, X. Rapid fabrication of self-healing, conductive, and injectable gel as dressings for healing wounds in stretchable parts of the body. Adv. Funct. Mater. 30, 2002370 (2020).

    Article  CAS  Google Scholar 

  69. Liang, Y., Qiao, L., Qiao, B. & Guo, B. Conductive hydrogels for tissue repair. Chem. Sci. 14, 3091–3116 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rafiq, A. et al. Biosynthesis of silver nanoparticles from novel Bischofia javanica plant loaded chitosan hydrogel: as antimicrobial and wound healing agent. Biomass Convers. Biorefinery 13, 15531–15541 (2023).

    Article  CAS  Google Scholar 

  71. Morena, A. G., Pérez-Rafael, S. & Tzanov, T. Lignin-based nanoparticles as both structural and active elements in self-assembling and self-healing multifunctional hydrogels for chronic wound management. Pharmaceutics 14, 2658 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ruszczak, Z. Effect of collagen matrices on dermal wound healing. Adv. Drug Deliv. Rev. 55, 1595–1611 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Farokhi, M., Mottaghitalab, F., Fatahi, Y., Khademhosseini, A. & Kaplan, D. L. Overview of silk fibroin use in wound dressings. Trends Biotechnol. 36, 907–922 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Angele, P. et al. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials 25, 2831–2841 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Serena, T. E. et al. A randomized controlled clinical trial of a hypothermically stored amniotic membrane for use in diabetic foot ulcers. J. Comp. Eff. Res. 9, 23–34 (2020).

    Article  PubMed  Google Scholar 

  76. McDevitt, C. A., Wildey, G. M. & Cutrone, R. M. Transforming growth factor-beta1 in a sterilized tissue derived from the pig small intestine submucosa. J. Biomed. Mater. Res. Part A 67, 637–640 (2003).

    Article  Google Scholar 

  77. Zhang, Y. et al. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact. Mater. 26, 323–336 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, H. et al. Extracellular matrix-mimetic immunomodulatory hydrogel for accelerating wound healing. Adv. Healthc. Mater. 12, e2301264 (2023).

    Article  PubMed  Google Scholar 

  79. Peng, Y. et al. Electrospun PLGA/SF/artemisinin composite nanofibrous membranes for wound dressing. Int. J. Biol. Macromol. 183, 68–78 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Stevens, A. J. et al. Programming multicellular assembly with synthetic cell adhesion molecules. Nature 614, 144–152 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31, 4639–4656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ouyang, J. et al. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc. Natl Acad. Sci. USA 117, 28667–28677 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Feng, C. et al. Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter 3, 127–144 (2020).

    Article  Google Scholar 

  85. **ong, Z. et al. A wireless and battery-free wound infection sensor based on DNA hydrogel. Sci. Adv. 7, eabj1617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Han, Y. et al. Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self-powered sensing of human physiological signals. ACS Appl. Mater. Interfaces 12, 16442–16450 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Shanmugapriya, K. & Kang, H. W. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: review. Mater. Sci. Eng. C 105, 110110 (2019).

    Article  CAS  Google Scholar 

  88. Buzzá, H. H. et al. Porphyrin nanoemulsion for antimicrobial photodynamic therapy: effective delivery to inactivate biofilm-related infections. Proc. Natl Acad. Sci. USA 119, e2216239119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yang, C. et al. Niobium carbide MXene augmented medical implant elicits bacterial infection elimination and tissue regeneration. ACS Nano 15, 1086–1099 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Barman, S. R. et al. A self-powered multifunctional dressing for active infection prevention and accelerated wound healing. Sci. Adv. 9, eadc8758 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shou, Y. et al. Mechano-activated cell therapy for accelerated diabetic wound healing. Adv. Mater. 35, 2304638 (2023).

    Article  CAS  Google Scholar 

  92. Chung, C. W. et al. Magnetic responsive release of nitric oxide from an MOF-derived Fe(3)O(4)@PLGA microsphere for the treatment of bacteria-infected cutaneous wound. ACS Appl. Mater. Interfaces 14, 6343–6357 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Ennis, W. J., Valdes, W., Gainer, M. & Meneses, P. Evaluation of clinical effectiveness of MIST ultrasound therapy for the healing of chronic wounds. Adv. Skin Wound Care 19, 437–446 (2006).

    Article  PubMed  Google Scholar 

  94. Kimball, A. S. et al. The histone methyltransferase setdb2 modulates macrophage phenotype and uric acid production in diabetic wound repair. Immunity 51, 258–271.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shirzaei Sani, E. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, eadf7388 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gao, Y. et al. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. 7, eabg9614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tu, J., Torrente-Rodríguez, R. M., Wang, M. & Gao, W. The era of digital health: a review of portable and wearable affinity biosensors. Adv. Funct. Mater. 30, 1906713 (2020).

    Article  CAS  Google Scholar 

  98. Tu, J. et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. 7, 1293–1306 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Saiko, G. et al. Hyperspectral imaging in wound care: a systematic review. Int. Wound J. 17, 1840–1856 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rebling, J., Ben-Yehuda Greenwald, M., Wietecha, M., Werner, S. & Razansky, D. Long-term imaging of wound angiogenesis with large scale optoacoustic microscopy. Adv. Sci. 8, 2004226 (2021).

    Article  CAS  Google Scholar 

  102. Brasier, N. et al. A three-level model for therapeutic drug monitoring of antimicrobials at the site of infection. Lancet Infect. Dis. 23, E445–E453 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Armstrong, D. G., Tan, T.-W., Boulton, A. J. M. & Bus, S. A. Diabetic foot ulcers: a review. JAMA 330, 62–75 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Brown, M. D. & Schoenfisch, M. H. Electrochemical nitric oxide sensors: principles of design and characterization. Chem. Rev. 119, 11551–11575 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Carlström, M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat. Rev. Nephrol. 17, 575–590 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ottolini, M. et al. Local peroxynitrite impairs endothelial transient receptor potential vanilloid 4 channels and elevates blood pressure in obesity. Circulation 141, 1318–1333 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Singh, N., Armstrong, D. G. & Lipsky, B. A. Preventing foot ulcers in patients with diabetes. JAMA 293, 217–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Cortes-Penfield, N. W. et al. Evaluation and management of diabetes-related foot infections. Clin. Infect. Dis. 77, 335–337 (2023).

    Article  PubMed  Google Scholar 

  109. Dealey, C., Cameron, J. & Arrowsmith, M. A study comparing two objective methods of quantifying the production of wound exudate. J. Wound Care 15, 149–153 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Ge, Z. et al. Wireless and closed-loop smart dressing for exudate management and on-demand treatment of chronic wounds. Adv. Mater. 35, 2304005 (2023).

    Article  CAS  Google Scholar 

  111. Schultz, G., Tariq, G., Harding, K., Carville, K., Romanelli, M., Chadwick, P., Percival, S., Moore, Z. WUWHS Consensus Document – Wound Exudate, effective assessment and management (World Union of Wound Healing Societies, 2019).

  112. Iizaka, S. et al. Quantitative estimation of exudate volume for full-thickness pressure ulcers: the ESTimation method. J. Wound Care 20, 458–463 (2011).

    Article  Google Scholar 

  113. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nyein, H. Y. Y. et al. A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10, 7216–7224 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Arroyo-Currás, N. et al. Real-time measurement of small molecules directly in awake, ambulatory animals. Proc. Natl Acad. Sci. USA 114, 645 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Garland, N. T. et al. A miniaturized, battery-free, wireless wound monitor that predicts wound closure rate early. Adv. Healthc. Mater. 12, 2301280 (2023).

    Article  CAS  Google Scholar 

  117. Hussain, G. & Silvester, D. S. Comparison of voltammetric techniques for ammonia sensing in ionic liquids. Electroanalysis 30, 75–83 (2018).

    Article  CAS  Google Scholar 

  118. Ye, C. et al. A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nat. Nanotechnol. 19, 330–337 (2023).

    Article  PubMed  Google Scholar 

  119. Wang, L., Zhou, M., Xu, T. & Zhang, X. Multifunctional hydrogel as wound dressing for intelligent wound monitoring. Chem. Eng. J. 433, 134625 (2022).

    Article  CAS  Google Scholar 

  120. Ramirez-GarciaLuna, J. L., Bartlett, R., Arriaga-Caballero, J. E., Fraser, R. D. J. & Saiko, G. Infrared thermography in wound care, surgery, and sports medicine: a review. Front. Physiol. 13, 838528 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Rennie, M., Lindvere-Teene, L., Tapang, K. & Linden, R. Point-of-care fluorescence imaging predicts the presence of pathogenic bacteria in wounds: a clinical study. J. Wound Care 26, 452–460 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Ottolino‐Perry, K. et al. Improved detection of clinically relevant wound bacteria using autofluorescence image‐guided sampling in diabetic foot ulcers. Int. Wound J. 14, 833–841 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Rennie, M. Y. et al. Understanding real-time fluorescence signals from bacteria and wound tissues observed with the MolecuLight i: XTM. Diagnostics 9, 22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cole, W. & Coe, S. Use of a bacterial fluorescence imaging system to target wound debridement and accelerate healing: a pilot study. J. Wound Care 29, S44–S52 (2020).

    Article  PubMed  Google Scholar 

  125. Serena, T. E., Harrell, K., Serena, L. & Yaakov, R. A. Real-time bacterial fluorescence imaging accurately identifies wounds with moderate-to-heavy bacterial burden. J. Wound Care 28, 346–357 (2019).

    Article  PubMed  Google Scholar 

  126. Mantri, Y. et al. Point-of-care ultrasound as a tool to assess wound size and tissue regeneration after skin grafting. Ultrasound Med. Biol. 47, 2550–2559 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Yang, P. et al. Orange-emissive carbon quantum dots: toward application in wound pH monitoring based on colorimetric and fluorescent changing. Small 15, e1902823 (2019).

    Article  PubMed  Google Scholar 

  128. Marks, H. et al. A paintable phosphorescent bandage for postoperative tissue oxygen assessment in DIEP flap reconstruction. Sci. Adv. 6, eabd1061 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Wei, X. et al. A cell-based electrochemical sensor for assessing immunomodulatory effects by atrazine and its metabolites. Biosens. Bioelectron. 203, 114015 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Al-Belushi, M. A. et al. ZnO nanorod-chitosan composite coatings with enhanced antifouling properties. Int. J. Biol. Macromol. 162, 1743–1751 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, J. et al. Antibacterial and antifouling hybrid ionic-covalent hydrogels with tunable mechanical properties. ACS Appl. Mater. Interfaces 11, 31594–31604 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Chen, Q. et al. Impact of antifouling PEG layer on the performance of functional peptides in regulating cell behaviors. J. Am. Chem. Soc. 141, 16772–16780 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Li, L. et al. Electrospun core-sheath PVDF piezoelectric fiber for sensing application. ACS Appl. Mater. Interfaces 15, 15938–15945 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Huang, Z. et al. An ultrasensitive aptamer–antibody sandwich cortisol sensor for the noninvasive monitoring of stress state. Biosens. Bioelectron. 190, 113451 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Heredia Rivera, U. et al. Printed low-cost PEDOT:PSS/PVA polymer composite for radiation sterilization monitoring. ACS Sens. 7, 960–971 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Yu, J. et al. Diffusion-modulated colorimetric sensor for continuous gas detection. IEEE Sens. J. 23, 11404–11411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zheng, X. T. et al. Carbon dot-doped hydrogel sensor array for multiplexed colorimetric detection of wound healing. ACS Appl. Mater. Interfaces 15, 17675–17687 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Sharifuzzaman, M. et al. Smart bandage with integrated multifunctional sensors based on MXene-functionalized porous graphene scaffold for chronic wound care management. Biosens. Bioelectron. 169, 112637 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Mostafalu, P. et al. Smart bandage for monitoring and treatment of chronic wounds. Small https://doi.org/10.1002/smll.201703509 (2018).

  140. Xu, G. et al. Battery-free and wireless smart wound dressing for wound infection monitoring and electrically controlled on-demand drug delivery. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202100852 (2021).

  141. Song, J. W. et al. Bioresorbable, wireless, and battery-free system for electrotherapy and impedance sensing at wound sites. Sci. Adv. 9, eade4687 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Luz, C. F. et al. Machine learning in infection management using routine electronic health records: tools, techniques, and reporting of future technologies. Clin. Microbiol. Infect. 26, 1291–1299 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Reifs, D., Casanova-Lozano, L., Reig-Bolaño, R. & Grau-Carrion, S. Clinical validation of computer vision and artificial intelligence algorithms for wound measurement and tissue classification in wound care. Inform. Med. Unlocked 37, 101185 (2023).

    Article  Google Scholar 

  144. Anisuzzaman, D. M. et al. Multi-modal wound classification using wound image and location by deep neural network. Sci. Rep. 12, 20057 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Howell, R. S. et al. Development of a method for clinical evaluation of artificial intelligence-based digital wound assessment tools. JAMA Netw. Open 4, e217234 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zheng, X. T. et al. Battery-free and AI-enabled multiplexed sensor patches for wound monitoring. Sci. Adv. 9, eadg6670 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Anisuzzaman, D. M. et al. Image-based artificial intelligence in wound assessment: a systematic review. Adv. Wound Care 11, 687–709 (2022).

    Article  CAS  Google Scholar 

  148. He, X., Yang, S., Liu, C., Xu, T. & Zhang, X. Integrated wound recognition in bandages for intelligent treatment. Adv. Healthc. Mater. 9, 2000941 (2020).

    Article  CAS  Google Scholar 

  149. Armstrong, D. G., Boulton, A. J. M. & Bus, S. A. Diabetic foot ulcers and their recurrence. N. Engl. J. Med. 376, 2367–2375 (2017).

    Article  PubMed  Google Scholar 

  150. Baughman, D. J. et al. Comparison of quality performance measures for patients receiving in-person vs telemedicine primary care in a large integrated health system. JAMA Netw. Open 5, e2233267 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  151. McLean, K. A. et al. Evaluation of remote digital postoperative wound monitoring in routine surgical practice. npj Digital Med. 6, 85 (2023).

    Article  Google Scholar 

  152. Taboada, G. M. et al. Overcoming the translational barriers of tissue adhesives. Nat. Rev. Mater. 5, 310–329 (2020).

    Article  Google Scholar 

  153. Li, J., Liang, J. Y., Laken, S. J., Langer, R. & Traverso, G. Clinical opportunities for continuous biosensing and closed-loop therapies. Trends Chem. 2, 319–340 (2020).

    Article  CAS  Google Scholar 

  154. Yadav, V., Bansal, P., Mittal, A. & Singh, S. Global regulatory aspects of wound care and burn dressings. Asian J. Pharm. Clin. Res. 11, 516 (2018).

    Article  Google Scholar 

  155. Guidance Documents. Medical Devices and Radiation-Emitting Products (US Food and Drug Administration, 2024).

  156. Maderal, A. D., Vivas, A. C., Eaglstein, W. H. & Kirsner, R. S. The FDA and designing clinical trials for chronic cutaneous ulcers. Semin. Cell Dev. Biol. 23, 993–999 (2012).

    Article  PubMed  Google Scholar 

  157. FDA Wound Healing Clinical Focus Group. Guidance for industry: chronic cutaneous ulcer and burn wounds — develo** products for treatment. Wound Repair Regen. 9, 258–268 (2001).

    Article  Google Scholar 

  158. Driver, V. R. et al. Identification and content validation of wound therapy clinical endpoints relevant to clinical practice and patient values for FDA approval. Part 1. Survey of the wound care community. Wound Repair Regen. 25, 454–465 (2017).

    Article  PubMed  Google Scholar 

  159. Robson, M. C. & Barbul, A. Guidelines for the best care of chronic wounds. Wound Repair Regen. 14, 647–648 (2006).

    Article  PubMed  Google Scholar 

  160. Murphy, P. S. & Evans, G. R. Advances in wound healing: a review of current wound healing products. Plast. Surg. Int. 2012, 190436 (2012).

    PubMed  PubMed Central  Google Scholar 

  161. Wadman, M. FDA no longer has to require animal testing for new drugs. Science 379, 127–128 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Flynn, K., Mahmoud, N. N., Sharifi, S., Gould, L. J. & Mahmoudi, M. Chronic wound healing models. ACS Pharmacol. Transl. Sci. 6, 783–801 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bassan, S. Data privacy considerations for telehealth consumers amid COVID-19. J. Law Biosci. 7, lsaa075 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Shachar, C., Engel, J. & Elwyn, G. Implications for telehealth in a postpandemic future: regulatory and privacy issues. JAMA 323, 2375–2376 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Huerta, C. T. et al. Novel gene-modified mesenchymal stem cell therapy reverses impaired wound healing in ischemic limbs. Ann. Surg. 278, 383–395 (2023).

    Article  PubMed  Google Scholar 

  166. Wu, X., Huang, D., Xu, Y., Chen, G. & Zhao, Y. Microfluidic templated stem cell spheroid microneedles for diabetic wound treatment. Adv. Mater. 35, e2301064 (2023).

    Article  PubMed  Google Scholar 

  167. Chen, P. et al. Single-cell and spatial transcriptomics decodes Wharton’s jelly-derived mesenchymal stem cells heterogeneity and a subpopulation with wound repair signatures. Adv. Sci. 10, e2204786 (2023).

    Article  Google Scholar 

  168. Wang, Z., Liang, X., Wang, G., Wang, X. & Chen, Y. Emerging bioprinting for wound healing. Adv. Mater. https://doi.org/10.1002/adma.202304738 (2023).

  169. Kim, S. H. et al. 3D bioprinted silk fibroin hydrogels for tissue engineering. Nat. Protoc. 16, 5484–5532 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Tabriz, A. G. & Douroumis, D. Recent advances in 3D printing for wound healing: a systematic review. J. Drug Deliv. Sci. Technol. 74, 103564 (2022).

    Article  CAS  Google Scholar 

  171. Tay, R. Y., Song, Y., Yao, D. R. & Gao, W. Direct-ink-writing 3D-printed bioelectronics. Mater. Today 71, 135–151 (2023).

    Article  CAS  Google Scholar 

  172. Song, Y. et al. 3D-printed epifluidic electronic skin for machine learning-powered multimodal health surveillance. Sci. Adv. 9, eadi6492 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tulloch, J., Zamani, R. & Akrami, M. Machine learning in the prevention, diagnosis and management of diabetic foot ulcers: a systematic review. IEEE Access 8, 198977–199000 (2020).

    Article  Google Scholar 

  174. Sempionatto, J. R., Lasalde-Ramírez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Xu, C., Solomon, S. A. & Gao, W. Artificial intelligence-powered electronic skin. Nat. Mach. Intell. 5, 1344–1355 (2023).

    Article  PubMed  Google Scholar 

  176. Xue, Y. et al. Artificial intelligence-assisted bioinformatics, microneedle, and diabetic wound healing: a ‘new deal’ of an old drug. ACS Appl. Mater. Interfaces 14, 37396–37409 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science Foundation grant 2145802, National Institutes of Health grants R01HL155815 and R21DK13266, Army Research Office grant W911NF-23-1-0041, American Cancer Society Research Scholar grant RSG-21-181-01-CTPS, Office of Naval Research grants N00014-21-1-2483 and N00014-21-1-2845 and Heritage Medical Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Wei Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Bozhi Tian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

510(k)-approval process: https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/premarket-notification-510k

Center for Devices and Radiological Health (CDRH): https://www.fda.gov/about-fda/fda-organization/center-devices-and-radiological-health

De novo process: https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/de-novo-classification-request#:~:Text=De%20Novo%20classification%20is%20a,)%5D%20submissions%2C%20when%20applicable

Investigational Device Exemption: https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/investigational-device-exemption-ide

Premarket approval: https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/premarket-approval-pma

Q-Submissions: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/requests-feedback-and-meetings-medical-device-submissions-q-submission-program-draft-guidance

Real-world evidence: https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Shirzaei Sani, E., Shih, CD. et al. Wound management materials and technologies from bench to bedside and beyond. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00693-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00693-y

  • Springer Nature Limited

Navigation