Log in

Acute lymphoblastic leukaemia

  • Primer
  • Published:

From Nature Reviews Disease Primers

View current issue Sign up to alerts

Abstract

Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Incidence of acute lymphoblastic leukaemia.
Fig. 2: Aetiological hypotheses of childhood ALL onset.
Fig. 3: Cell signalling pathways involved in ALL pathogenesis.
Fig. 4: Diagnostic work-up of acute lymphoblastic leukaemia.
Fig. 5: Trial profile in acute lymphoblastic leukaemia.
Fig. 6: Major challenges in CAR-T therapy for T-ALL.

Similar content being viewed by others

References

  1. Zhang, N. et al. Global burden of hematologic malignancies and evolution patterns over the past 30 years. Blood Cancer J. 13, 82 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yi, M., Zhou, L., Li, A., Luo, S. & Wu, K. Global burden and trend of acute lymphoblastic leukemia from 1990 to 2017. Aging 12, 22869–22891 (2020).

    PubMed  PubMed Central  Google Scholar 

  3. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  4. Hunger, S. P. & Mullighan, C. G. Acute lymphoblastic leukemia in children. N. Engl. J. Med. 373, 1541–1552 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Malard, F. & Mohty, M. Acute lymphoblastic leukaemia. Lancet 395, 1146–1162 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Beder, T. et al. The gene expression classifier ALLCatchR identifies B-cell precursor ALL subtypes and underlying developmental trajectories across age. Hemasphere 7, e939 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferrando, A. A. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1, 75–87 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Kopmar, N. E. & Cassaday, R. D. How I prevent and treat central nervous system disease in adults with acute lymphoblastic leukemia. Blood 141, 1379–1388 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Alaggio, R. et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: lymphoid neoplasms. Leukemia 36, 1720–1748 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Arber, D. A. et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 140, 1200–1228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farber, S. & Diamond, L. K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793 (1948).

    Article  CAS  PubMed  Google Scholar 

  12. Pui, C. H. et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N. Engl. J. Med. 360, 2730–2741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bradstock, K. F. et al. Immunological monitoring of residual disease in treated thymic acute lymphoblastic leukaemia. Leuk. Res. 5, 301–309 (1981).

    Article  CAS  PubMed  Google Scholar 

  14. Frei, I. I. I. et al. Studies of sequential and combination antimetabolite therapy in acute leukemia: 6-mercaptopurine and methotrexate. Blood 18, 431–454 (1961).

    Article  Google Scholar 

  15. Aur, R. J. et al. Central nervous system therapy and combination chemotherapy of childhood lymphocytic leukemia. Blood 37, 272–281 (1971).

    Article  CAS  PubMed  Google Scholar 

  16. Sallan, S. E. et al. Influence of intensive asparaginase in the treatment of childhood non-T-cell acute lymphoblastic leukemia. Cancer Res. 43, 5601–5607 (1983).

    CAS  PubMed  Google Scholar 

  17. Jones, B. et al. Lower incidence of meningeal leukemia when prednisone is replaced by dexamethasone in the treatment of acute lymphocytic leukemia. Med. Pediatr. Oncol. 19, 269–275 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Ford, C. E., Jacobs, P. A. & Lajtha, L. G. Human somatic chromosomes. Nature 181, 1565–1568 (1958).

    Article  CAS  PubMed  Google Scholar 

  19. Yeoh, E. J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Armstrong, S. A. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30, 41–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Propp, S. & Lizzi, F. A. Philadelphia chromosome in acute lymphocytic leukemia. Blood 36, 353–360 (1970).

    Article  CAS  PubMed  Google Scholar 

  22. Sen, L. & Borella, L. Clinical importance of lymphoblasts with T markers in childhood acute leukemia. N. Engl. J. Med. 292, 828–832 (1975).

    Article  CAS  PubMed  Google Scholar 

  23. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh, H. et al. Redirecting specificity of T-cell populations for CD19 using the Slee** Beauty system. Cancer Res. 68, 2961–2971 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miranda-Filho, A. et al. Epidemiological patterns of leukaemia in 184 countries: a population-based study. Lancet Haematol. 5, e14–e24 (2018).

    Article  PubMed  Google Scholar 

  29. NIH. SEER*Explorer app incidence. NIH https://seer.cancer.gov/statistics-network/explorer/application.html?site=1&data_type=1&graph_type=2&compareBy=sex&chk_sex_3=3&chk_sex_2=2&rate_type=2&race=1&age_range=1&hdn_stage=101&advopt_precision=1&advopt_show_ci=on&hdn_view=0&advopt_show_apc=on&advopt_display=2#resultsRegion0 (2023).

  30. Dores, G. M., Devesa, S. S., Curtis, R. E., Linet, M. S. & Morton, L. M. Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood 119, 34–43 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van der Meulen, J. et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood 125, 13–21 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hu, Y. et al. Global burden and attributable risk factors of acute lymphoblastic leukemia in 204 countries and territories in 1990–2019: estimation based on Global Burden of Disease Study 2019. Hematol. Oncol. 40, 92–104 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Hunger, S. P. & Mullighan, C. G. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood 125, 3977–3987 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katz, A. J., Chia, V. M., Schoonen, W. M. & Kelsh, M. A. Acute lymphoblastic leukemia: an assessment of international incidence, survival, and disease burden. Cancer Causes Control 26, 1627–1642 (2015).

    Article  PubMed  Google Scholar 

  35. NIH. SEER*Explorer app mortality. NIH https://seer.cancer.gov/statistics-network/explorer/application.html?site=1&data_type=1&graph_type=2&compareBy=sex&chk_sex_3=3&chk_sex_2=2&rate_type=2&race=1&age_range=1&hdn_stage=101&advopt_precision=1&advopt_show_ci=on&hdn_view=0&advopt_show_apc=on&advopt_display=2#resultsRegion0 (2023).

  36. Schmidt, J. A. et al. Risk factors for childhood leukemia: radiation and beyond. Front. Public Health 9, 805757 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Greaves, M. F. Aetiology of acute leukaemia. Lancet 349, 344–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Kinlen, L. Evidence for an infective cause of childhood leukaemia: comparison of a Scottish new town with nuclear reprocessing sites in Britain. Lancet 332, 1323–1327 (1988).

    Article  Google Scholar 

  39. Pui, C. H., Robison, L. L. & Look, A. T. Acute lymphoblastic leukaemia. Lancet 371, 1030–1043 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Inaba, H., Greaves, M. & Mullighan, C. G. Acute lymphoblastic leukaemia. Lancet 381, 1943–1955 (2013).

    Article  PubMed  Google Scholar 

  41. Smith, M. A. et al. Evidence that childhood acute lymphoblastic leukemia is associated with an infectious agent linked to hygiene conditions. Cancer Causes Control 9, 285–298 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Schmiegelow, K., Vestergaard, T., Nielsen, S. M. & Hjalgrim, H. Etiology of common childhood acute lymphoblastic leukemia: the adrenal hypothesis. Leukemia 22, 2137–2141 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Richardson, R. B. Promotional etiology for common childhood acute lymphoblastic leukemia: the infective lymphoid recovery hypothesis. Leuk. Res. 35, 1425–1431 (2011).

    Article  PubMed  Google Scholar 

  44. Kroll, M. E., Draper, G. J., Stiller, C. A. & Murphy, M. F. Childhood leukemia incidence in Britain, 1974–2000: time trends and possible relation to influenza epidemics. J. Natl Cancer Inst. 98, 417–420 (2006).

    Article  PubMed  Google Scholar 

  45. Greaves, M. Infection, immune responses and the aetiology of childhood leukaemia. Nat. Rev. Cancer 6, 193–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Gocho, Y. & Yang, J. J. Genetic defects in hematopoietic transcription factors and predisposition to acute lymphoblastic leukemia. Blood 134, 793–797 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moriyama, T., Relling, M. V. & Yang, J. J. Inherited genetic variation in childhood acute lymphoblastic leukemia. Blood 125, 3988–3995 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pui, C. H., Nichols, K. E. & Yang, J. J. Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nat. Rev. Clin. Oncol. 16, 227–240 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Sherborne, A. L. et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat. Genet. 42, 492–494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walsh, K. M. et al. A heritable missense polymorphism in CDKN2A confers strong risk of childhood acute lymphoblastic leukemia and is preferentially selected during clonal evolution. Cancer Res. 75, 4884–4894 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu, H. et al. Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children. Nat. Commun. 6, 7553 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, H. et al. Novel susceptibility variants at 10p12.31–12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J. Natl Cancer Inst. 105, 733–742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bloom, M., Maciaszek, J. L., Clark, M. E., Pui, C. H. & Nichols, K. E. Recent advances in genetic predisposition to pediatric acute lymphoblastic leukemia. Expert Rev. Hematol. 13, 55–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Papaemmanuil, E. et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Trevino, L. R. et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang, W. et al. ARID5B SNP rs10821936 is associated with risk of childhood acute lymphoblastic leukemia in blacks and contributes to racial differences in leukemia incidence. Leukemia 24, 894–896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perez-Andreu, V. et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat. Genet. 45, 1494–1498 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. de Smith, A. J. et al. Heritable variation at the chromosome 21 gene ERG is associated with acute lymphoblastic leukemia risk in children with and without Down syndrome. Leukemia 33, 2746–2751 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Noetzli, L. et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat. Genet. 47, 535–538 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, M. Y. et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat. Genet. 47, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vijayakrishnan, J. et al. A genome-wide association study identifies risk loci for childhood acute lymphoblastic leukemia at 10q26.13 and 12q23.1. Leukemia 31, 573–579 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Vijayakrishnan, J. et al. Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk. Nat. Commun. 10, 5348 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang, J. et al. Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 373, 2336–2346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jonas, D. M., Heilbron, D. C. & Ablin, A. R. Rubinstein–Taybi syndrome and acute leukemia. J. Pediatr. 92, 851–852 (1978).

    Article  CAS  PubMed  Google Scholar 

  65. Siraganian, P. A., Rubinstein, J. H. & Miller, R. W. Keloids and neoplasms in the Rubinstein–Taybi syndrome. Med. Pediatr. Oncol. 17, 485–491 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Kratz, C. P., Rapisuwon, S., Reed, H., Hasle, H. & Rosenberg, P. S. Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. Am. J. Med. Genet. Part C: Semin. Med. Genet. 157, 83–89 (2011).

    Article  Google Scholar 

  67. Kratz, C. P. et al. Cancer spectrum and frequency among children with Noonan, Costello, and cardio-facio-cutaneous syndromes. Br. J. Cancer 112, 1392–1397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wimmer, K. & Etzler, J. Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? Hum. Genet. 124, 105–122 (2008).

    Article  PubMed  Google Scholar 

  69. Holmfeldt, L. et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat. Genet. 45, 242–252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Felix, C. A. et al. Hereditary and acquired p53 gene mutations in childhood acute lymphoblastic leukemia. J. Clin. Invest. 89, 640–647 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hasle, H., Clemmensen, I. H. & Mikkelsen, M. Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet 355, 165–169 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Mullighan, C. G. et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat. Genet. 41, 1243–1246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Izraeli, S., Vora, A., Zwaan, C. M. & Whitlock, J. How I treat ALL in Down’s syndrome: pathobiology and management. Blood 123, 35–40 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Hertzberg, L. et al. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood 115, 1006–1017 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Bercovich, D. et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet 372, 1484–1492 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Blink, M. et al. Frequency and prognostic implications of JAK 1–3 aberrations in Down syndrome acute lymphoblastic and myeloid leukemia. Leukemia 25, 1365–1368 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Dördelmann, M. et al. Down’s syndrome in childhood acute lymphoblastic leukemia: clinical characteristics and treatment outcome in four consecutive BFM trials. Leukemia 12, 645–651 (1998).

    Article  PubMed  Google Scholar 

  78. Chessells, J. et al. Treatment of infants with lymphoblastic leukaemia: results of the UK Infant Protocols 1987–1999. Br. J. Haematol. 117, 306–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Buitenkamp, T. D. et al. Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. Blood 123, 70–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pouliot, G. P. et al. Fanconi–BRCA pathway mutations in childhood T-cell acute lymphoblastic leukemia. PLoS ONE 14, e0221288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, Y. et al. Germline RUNX1 variation and predisposition to childhood acute lymphoblastic leukemia. J. Clin. Invest. 131, e147898 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Klco, J. M. & Mullighan, C. G. Advances in germline predisposition to acute leukaemias and myeloid neoplasms. Nat. Rev. Cancer 21, 122–137 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Churchman, M. L. et al. Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell 33, 937–948 e938 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nishii, R. et al. Molecular basis of ETV6-mediated predisposition to childhood acute lymphoblastic leukemia. Blood 137, 364–373 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moriyama, T. et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncol. 16, 1659–1666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bernt, K. M. & Armstrong, S. A. Leukemia stem cells and human acute lymphoblastic leukemia. Semin. Hematol. 46, 33–38 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Castor, A. et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat. Med. 11, 630–637 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Coustan-Smith, E. et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 10, 147–156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, J. F. et al. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proc. Natl Acad. Sci. USA 115, E11711–E11720 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hetzel, S. et al. Acute lymphoblastic leukemia displays a distinct highly methylated genome. Nat. Cancer 3, 768–782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Iacobucci, I., Kimura, S. & Mullighan, C. G. Biologic and therapeutic implications of genomic alterations in acute lymphoblastic leukemia. J. Clin. Med. 10, 3792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, J. et al. Emerging molecular subtypes and therapeutic targets in B-cell precursor acute lymphoblastic leukemia. Front Med. 15, 347–371 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Inaba, H. & Mullighan, C. G. Pediatric acute lymphoblastic leukemia. Haematologica 105, 2524–2539 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stary, J. et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J. Clin. Oncol. 32, 174–184 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Bassan, R., Bourquin, J. P., DeAngelo, D. J. & Chiaretti, S. New approaches to the management of adult acute lymphoblastic leukemia. J. Clin. Oncol. https://doi.org/10.1200/JCO.2017.77.3648 (2018).

    Article  PubMed  Google Scholar 

  96. Boissel, N. et al. In adults with Ph-negative acute lymphoblastic leukemia (ALL), age-adapted chemotherapy intensity and MRD-driven transplant indication significantly reduces treatment-related mortality (TRM) and improves overall survival – results from the GRAALL-2014 trial. Blood 140, 112–114 (2022).

    Article  Google Scholar 

  97. Stock, W. et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood 133, 1548–1559 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Paulsson, K. et al. The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat. Genet. 47, 672–676 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Gao, Q. et al. The genomic landscape of acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Blood 142, 711–723 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Brady, S. W. et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat. Genet. 54, 1376–1389 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim, R. et al. Adult low-hypodiploid acute lymphoblastic leukemia emerges from preleukemic TP53-mutant clonal hematopoiesis. Blood Cancer Discov. 4, 134–149 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Safavi, S. & Paulsson, K. Near-haploid and low-hypodiploid acute lymphoblastic leukemia: two distinct subtypes with consistently poor prognosis. Blood 129, 420–423 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Harrison, C. J. Blood Spotlight on iAMP21 acute lymphoblastic leukemia (ALL), a high-risk pediatric disease. Blood 125, 1383–1386 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Moorman, A. V. et al. Risk-directed treatment intensification significantly reduces the risk of relapse among children and adolescents with acute lymphoblastic leukemia and intrachromosomal amplification of chromosome 21: a comparison of the MRC ALL97/99 and UKALL2003 trials. J. Clin. Oncol. 31, 3389–3396 (2013).

    Article  PubMed  Google Scholar 

  105. Li, Y. et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508, 98–102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hormann, F. M. et al. Integrating copy number data of 64 iAMP21 BCP-ALL patients narrows the common region of amplification to 1.57 Mb. Front. Oncol. 13, 1128560 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kurzrock, R., Gutterman, J. U. & Talpaz, M. The molecular genetics of Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 319, 990–998 (1988).

    Article  CAS  PubMed  Google Scholar 

  108. Foa, R. & Chiaretti, S. Philadelphia chromosome-positive acute lymphoblastic leukemia. N. Engl. J. Med. 386, 2399–2411 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Biondi, A. et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol. 13, 936–945 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Andersson, A. K. et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat. Genet. 47, 330–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Meyer, C. et al. The KMT2A recombinome of acute leukemias in 2023. Leukemia 37, 988–1005 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Meyer, C. et al. The MLL recombinome of acute leukemias in 2013. Leukemia 27, 2165–2176 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Loh, M. L. et al. Prospective analysis of TEL/AML1-positive patients treated on dana-farber cancer institute consortium protocol 95-01. Blood 107, 4508–4513 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shurtleff, S. A. et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 9, 1985–1989 (1995).

    CAS  PubMed  Google Scholar 

  116. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6–RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sundaresh, A. & Williams, O. Mechanism of ETV6–RUNX1 leukemia. Adv. Exp. Med. Biol. 962, 201–216 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Kubota-Tanaka, M. et al. B-lymphoblastic lymphoma with TCF3–PBX1 fusion gene. Haematologica 104, e35–e37 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Geng, H. et al. Self-enforcing feedback activation between BCL6 and pre-B cell receptor signaling defines a distinct subtype of acute lymphoblastic leukemia. Cancer Cell 27, 409–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Burmeister, T. et al. Clinical features and prognostic implications of TCF3–PBX1 and ETV6–RUNX1 in adult acute lymphoblastic leukemia. Haematologica 95, 241–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Fischer, U. et al. Genomics and drug profiling of fatal TCF3–HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat. Genet. 47, 1020–1029 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yasuda, T. et al. Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nat. Genet. 48, 569–574 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Liu, Y. F. et al. Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia. EBioMedicine 8, 173–183 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zhang, J. et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat. Genet. 48, 1481–1489 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lilljebjörn, H. et al. Identification of ETV6–RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat. Commun. 7, 11790 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Dong, X. et al. Structural basis of DUX4/IGH-driven transactivation. Leukemia 32, 1466–1476 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hirabayashi, S. et al. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica 102, 118–129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gocho, Y. et al. A novel recurrent EP300–ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia. Leukemia 29, 2445–2448 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Shago, M., Abla, O., Hitzler, J., Weitzman, S. & Abdelhaleem, M. Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion. Pediatr. Blood Cancer 63, 1915–1921 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Bueno, C., Ballerini, P., Varela, I., Menendez, P. & Bashford-Rogers, R. Shared D-J rearrangements reveal cell of origin of TCF3–ZNF384 and PTPN11 mutations in monozygotic twins with concordant BCP-ALL. Blood 136, 1108–1111 (2020).

    Article  PubMed  Google Scholar 

  131. Hirabayashi, S. et al. Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the Ponte di Legno Childhood ALL Working Group. Leukemia 35, 3272–3277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Migita, N. A. et al. Classification and genetics of pediatric B-other acute lymphoblastic leukemia by targeted RNA sequencing. Blood Adv. 7, 2957–2971 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, M. et al. Functional, structural, and molecular characterizations of the leukemogenic driver MEF2D–HNRNPUL1 fusion. Blood 140, 1390–1407 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gu, Z. et al. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat. Commun. 7, 13331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Suzuki, K. et al. MEF2D–BCL9 fusion gene is associated with high-risk acute B-cell precursor lymphoblastic leukemia in adolescents. J. Clin. Oncol. 34, 3451–3459 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Ohki, K. et al. Clinical and molecular characteristics of MEF2D fusion-positive B-cell precursor acute lymphoblastic leukemia in childhood, including a novel translocation resulting in MEF2D–HNRNPH1 gene fusion. Haematologica 104, 128–137 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tsuzuki, S. et al. Targeting MEF2D-fusion oncogenic transcriptional circuitries in B-cell precursor acute lymphoblastic leukemia. Blood Cancer Discov. 1, 82–95 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hormann, F. M. et al. NUTM1 is a recurrent fusion gene partner in B-cell precursor acute lymphoblastic leukemia associated with increased expression of genes on chromosome band 10p12.31-12.2. Haematologica 104, e455–e459 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. McEvoy, C. R., Fox, S. B. & Prall, O. W. J. Emerging entities in NUTM1-rearranged neoplasms. Genes Chromosomes Cancer 59, 375–385 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Boer, J. M. et al. Favorable outcome of NUTM1-rearranged infant and pediatric B cell precursor acute lymphoblastic leukemia in a collaborative international study. Leukemia 35, 2978–2982 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gu, Z. et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat. Genet. 51, 296–307 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Passet, M. et al. PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. Blood 133, 280–284 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Den Boer, M. L. et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 10, 125–134 (2009).

    Article  Google Scholar 

  144. Roberts, K. G. et al. ETV6–NTRK3 induces aggressive acute lymphoblastic leukemia highly sensitive to selective TRK inhibition. Blood 132, 861–865 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schewe, D. M. et al. Larotrectinib in TRK fusion-positive pediatric B-cell acute lymphoblastic leukemia. Blood Adv. 3, 3499–3502 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Roberts, K. G. et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med. 371, 1005–1015 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Tasian, S. K., Loh, M. L. & Hunger, S. P. Philadelphia chromosome-like acute lymphoblastic leukemia. Blood 130, 2064–2072 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Roberts, K. G. et al. High frequency and poor outcome of Philadelphia chromosome-like acute lymphoblastic leukemia in adults. J. Clin. Oncol. 35, 394–401 (2017).

    Article  PubMed  Google Scholar 

  149. Jain, N. et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood 129, 572–581 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schultz, K. R. et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031. Leukemia 28, 1467–1471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Biondi, A. et al. Imatinib treatment of paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (EsPhALL2010): a prospective, intergroup, open-label, single-arm clinical trial. Lancet Haematol. 5, e641–e652 (2018).

    Article  PubMed  Google Scholar 

  152. Zaliova, M. et al. ETV6/RUNX1-like acute lymphoblastic leukemia: a novel B-cell precursor leukemia subtype associated with the CD27/CD44 immunophenotype. Genes Chromosomes Cancer 56, 608–616 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Bastian, L. et al. PAX5 biallelic genomic alterations define a novel subgroup of B-cell precursor acute lymphoblastic leukemia. Leukemia 33, 1895–1909 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Mullighan, C. G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Stanulla, M., Cavé, H. & Moorman, A. V. IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? Blood 135, 252–260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zaliova, M. et al. Frequency and prognostic impact of ZEB2 H1038 and Q1072 mutations in childhood B-other acute lymphoblastic leukemia. Haematologica 106, 886–890 (2021).

    Article  PubMed  Google Scholar 

  157. Yasuda, T. et al. Two novel high-risk adult B-cell acute lymphoblastic leukemia subtypes with high expression of CDX2 and IDH1/2 mutations. Blood 139, 1850–1862 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Kimura, S. et al. Enhancer retargeting of CDX2 and UBTF::ATXN7L3 define a subtype of high-risk B-progenitor acute lymphoblastic leukemia. Blood 139, 3519–3531 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Passet, M. et al. Concurrent CDX2 cis-deregulation and UBTF::ATXN7L3 fusion define a novel high-risk subtype of B-cell ALL. Blood 139, 3505–3518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bastian, L. et al. UBTF::ATXN7L3 gene fusion defines novel B cell precursor ALL subtype with CDX2 expression and need for intensified treatment. Leukemia 36, 1676–1680 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu, Y. et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 49, 1211–1218 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chen, B. et al. Identification of fusion genes and characterization of transcriptome features in T-cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 115, 373–378 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Dai, Y. T. et al. Transcriptome-wide subty** of pediatric and adult T cell acute lymphoblastic leukemia in an international study of 707 cases. Proc. Natl Acad. Sci. USA 119, e2120787119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Muller, J. et al. How T-lymphoblastic leukemia can be classified based on genetics using standard diagnostic techniques enhanced by whole genome sequencing. Leukemia 37, 217–221 (2023).

    Article  PubMed  Google Scholar 

  165. Seki, M. et al. Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia. Nat. Genet. 49, 1274–1281 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Soulier, J. et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 106, 274–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Ferrando, A. A. et al. Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet 363, 535–536 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Bernard, O. A. et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 15, 1495–1504 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Homminga, I. et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 19, 484–497 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Bash, R. O. et al. Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A Pediatric Oncology Group study. Blood 86, 666–676 (1995).

    Article  CAS  PubMed  Google Scholar 

  171. Mansour, M. R. et al. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373–1377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Heerema, N. A. et al. Frequency and clinical significance of cytogenetic abnormalities in pediatric T-lineage acute lymphoblastic leukemia: a report from the Children’s Cancer Group. J. Clin. Oncol. 16, 1270–1278 (1998).

    Article  CAS  PubMed  Google Scholar 

  173. Royer-Pokora, B., Loos, U. & Ludwig, W. D. TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene 6, 1887–1893 (1991).

    CAS  PubMed  Google Scholar 

  174. Van Vlierberghe, P. et al. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood 108, 3520–3529 (2006).

    Article  PubMed  Google Scholar 

  175. Belver, L. & Ferrando, A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 16, 494–507 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. O’Neil, J. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J. Exp. Med. 204, 1813–1824 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Thompson, B. J. et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J. Exp. Med. 204, 1825–1835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Radtke, F., MacDonald, H. R. & Tacchini-Cottier, F. Regulation of innate and adaptive immunity by Notch. Nat. Rev. Immunol. 13, 427–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Herranz, D. et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat. Med. 20, 1130–1137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl Acad. Sci. USA 103, 18261–18266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13, 1203–1210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Herranz, D. et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat. Med. 21, 1182–1189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pagliaro, L., Marchesini, M. & Roti, G. Targeting oncogenic Notch signaling with SERCA inhibitors. J. Hematol. Oncol. 14, 8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zheng, R., Li, M., Wang, S. & Liu, Y. Advances of target therapy on NOTCH1 signaling pathway in T-cell acute lymphoblastic leukemia. Exp. Hematol. Oncol. 9, 31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hebert, J., Cayuela, J. M., Berkeley, J. & Sigaux, F. Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood 84, 4038–4044 (1994).

    Article  CAS  PubMed  Google Scholar 

  186. Bensberg, M. et al. TET2 as a tumor suppressor and therapeutic target in T-cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 118, e2110758118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Piovan, E. et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell 24, 766–776 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–301, (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ntziachristos, P. et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514, 513–517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Van Vlierberghe, P. et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat. Genet. 42, 338–342 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  192. De Keersmaecker, K. et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat. Genet. 45, 186–190 (2013).

    Article  PubMed  Google Scholar 

  193. Meyer, J. A. et al. Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat. Genet. 45, 290–294 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Tzoneva, G. et al. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat. Med. 19, 368–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kunz, J. B. et al. Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation. Haematologica 100, 1442–1450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mullighan, C. G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Oshima, K. et al. Mutational and functional genetics map** of chemotherapy resistance mechanisms in relapsed acute lymphoblastic leukemia. Nat. Cancer 1, 1113–1127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Onciu, M. Acute lymphoblastic leukemia. Hematol. Oncol. Clin. North Am. 23, 655–674 (2009).

    Article  PubMed  Google Scholar 

  199. Boccara, O. et al. Cutaneous B-cell lymphoblastic lymphoma in children: a rare diagnosis. J. Am. Acad. Dermatol. 66, 51–57 (2012).

    Article  PubMed  Google Scholar 

  200. Eguiguren, J. M., Schell, M. J., Crist, W. M., Kunkel, K. & Rivera, G. K. Complications and outcome in childhood acute lymphoblastic leukemia with hyperleukocytosis. Blood 79, 871–875 (1992).

    Article  CAS  PubMed  Google Scholar 

  201. Irken, G. et al. Hyperleukocytosis in childhood acute lymphoblastic leukemia: complications and treatment outcome. Turk. J. Haematol. 23, 142–146 (2006).

    PubMed  Google Scholar 

  202. Pui, C. H. et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. Blood 77, 440–447 (1991).

    Article  CAS  PubMed  Google Scholar 

  203. Johansson, B. et al. Hematologic malignancies with t(4;11)(q21;q23)–a cytogenetic, morphologic, immunophenotypic and clinical study of 183 cases. European 11q23 Workshop participants. Leukemia 12, 779–787 (1998).

    Article  CAS  PubMed  Google Scholar 

  204. Crist, W. et al. Philadelphia chromosome positive childhood acute lymphoblastic leukemia: clinical and cytogenetic characteristics and treatment outcome. A Pediatric Oncology Group study. Blood 76, 489–494 (1990).

    Article  CAS  PubMed  Google Scholar 

  205. Quesnel, B. et al. p16 gene homozygous deletions in acute lymphoblastic leukemia. Blood 85, 657–663 (1995).

    Article  CAS  PubMed  Google Scholar 

  206. Fizzotti, M. et al. Detection of homozygous deletions of the cyclin-dependent kinase 4 inhibitor (p16) gene in acute lymphoblastic leukemia and association with adverse prognostic features. Blood 85, 2685–2690 (1995).

    Article  CAS  PubMed  Google Scholar 

  207. Harousseau, J. L. et al. High risk acute lymphocytic leukemia: a study of 141 cases with initial white blood cell counts over 100,000/cu mm. Cancer 46, 1996–2003 (1980).

    Article  CAS  PubMed  Google Scholar 

  208. Wells, D. A. et al. Multidimensional flow cytometry of marrow can differentiate leukemic from normal lymphoblasts and myeloblasts after chemotherapy and bone marrow transplantation. Am. J. Clin. Pathol. 110, 84–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  209. Bene, M. C. et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 9, 1783–1786 (1995).

    CAS  PubMed  Google Scholar 

  210. Berry, D. A. et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol. 3, e170580 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Ciudad, J. et al. Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J. Clin. Oncol. 16, 3774–3781 (1998).

    Article  CAS  PubMed  Google Scholar 

  212. Theunissen, P. et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood 129, 347–357 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Short, N. J. et al. Recommendations for the assessment and management of measurable residual disease in adults with acute lymphoblastic leukemia: a consensus of North American experts. Am. J. Hematol. 94, 257–265 (2019).

    Article  PubMed  Google Scholar 

  214. van der Velden, V. H. J. et al. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17, 1013–1034 (2003).

    Article  PubMed  Google Scholar 

  215. Short, N. J. et al. High-sensitivity next-generation sequencing MRD assessment in ALL identifies patients at very low risk of relapse. Blood Adv. 6, 4006–4014 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sedek, L. et al. The immunophenotypes of blast cells in B-cell precursor acute lymphoblastic leukemia: how different are they from their normal counterparts? Cytom. B Clin. Cytom. 86, 329–339 (2014).

    Article  CAS  Google Scholar 

  217. Koehler, M. et al. Transitional pre-B-cell acute lymphoblastic leukemia of childhood is associated with favorable prognostic clinical features and an excellent outcome: a Pediatric Oncology Group study. Leukemia 7, 2064–2068 (1993).

    CAS  PubMed  Google Scholar 

  218. Demina, I. et al. Heterogeneity of childhood acute leukemia with mature B-cell immunophenotype. J. Cancer Res. Clin. Oncol. 145, 2803–2811 (2019).

    Article  CAS  PubMed  Google Scholar 

  219. Campo, E. et al. The International Consensus Classification of mature lymphoid neoplasms: a report from the Clinical Advisory Committee. Blood 140, 1229–1253 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Bomken, S. et al. Molecular characterization and clinical outcome of B-cell precursor acute lymphoblastic leukemia with IG-MYC rearrangement. Haematologica 108, 717–731 (2023).

    Article  CAS  PubMed  Google Scholar 

  221. Alexander, T. B. et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature 562, 373–379 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Di Giacomo, D. et al. 14q32 rearrangements deregulating BCL11B mark a distinct subgroup of T-lymphoid and myeloid immature acute leukemia. Blood 138, 773–784 (2021).

    PubMed  PubMed Central  Google Scholar 

  223. Vadillo, E., Dorantes-Acosta, E., Pelayo, R. & Schnoor, M. T cell acute lymphoblastic leukemia (T-ALL): new insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies. Blood Rev. 32, 36–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  224. Bond, J. et al. Early response-based therapy stratification improves survival in adult early thymic precursor acute lymphoblastic leukemia: a Group for Research on Adult Acute Lymphoblastic Leukemia study. J. Clin. Oncol. 35, 2683–2691 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Wood, B. et al. Prognostic significance of ETP phenotype and minimal residual disease in T-ALL: a Children’s Oncology Group study. Blood 142, 2069–2078 (2023).

    Article  CAS  PubMed  Google Scholar 

  226. Konn, Z. J., Wright, S. L., Barber, K. E. & Harrison, C. J. Fluorescence In situ hybridization (FISH) as a tool for the detection of significant chromosomal abnormalities in childhood leukaemia. Methods Mol. Biol. 538, 29–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  227. Bashton, M. et al. Concordance of copy number abnormality detection using SNP arrays and Multiplex Ligation-dependent Probe Amplification (MLPA) in acute lymphoblastic leukaemia. Sci. Rep. 10, 45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Enshaei, A. et al. A validated novel continuous prognostic index to deliver stratified medicine in pediatric acute lymphoblastic leukemia. Blood 135, 1438–1446 (2020).

    Article  PubMed  Google Scholar 

  229. Stanulla, M. et al. IKZF1(plus) defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia. J. Clin. Oncol. 36, 1240–1249 (2018).

    Article  CAS  PubMed  Google Scholar 

  230. Benard-Slagter, A. et al. Digital multiplex ligation-dependent probe amplification for detection of key copy number alterations in T- and B-cell lymphoblastic leukemia. J. Mol. Diagn. 19, 659–672 (2017).

    Article  CAS  PubMed  Google Scholar 

  231. Schwab, C. J. et al. Genetic characterisation of childhood B-other-acute lymphoblastic leukaemia in UK patients by fluorescence in situ hybridisation and multiplex ligation-dependent probe amplification. Br. J. Haematol. 196, 753–763 (2022).

    Article  CAS  PubMed  Google Scholar 

  232. Schwab, C. J. et al. Evaluation of multiplex ligation-dependent probe amplification as a method for the detection of copy number abnormalities in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 49, 1104–1113 (2010).

    Article  CAS  PubMed  Google Scholar 

  233. Ryan, S. L. et al. Whole genome sequencing provides comprehensive genetic testing in childhood B-cell acute lymphoblastic leukaemia. Leukemia 37, 518–528 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Schwab, C. et al. Integrative genomic analysis of childhood acute lymphoblastic leukaemia lacking a genetic biomarker in the UKALL2003 clinical trial. Leukemia 37, 529–538 (2023).

    Article  CAS  PubMed  Google Scholar 

  235. Rack, K. et al. Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome map**. Am. J. Hematol. 97, 548–561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Nakagawa, H. & Fujita, M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci. 109, 513–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Mullighan, C. et al. The genomic basis of childhood T-lineage acute lymphoblastic leukemia. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3488430/v1 (2023).

  238. Sive, J. I. et al. Outcomes in older adults with acute lymphoblastic leukaemia (ALL): results from the international MRC UKALL XII/ECOG2993 trial. Br. J. Haematol. 157, 463–471 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Kantarjian, H. et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer 101, 2788–2801 (2004).

    Article  CAS  PubMed  Google Scholar 

  240. Coustan-Smith, E. et al. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood 100, 2399–2402 (2002).

    Article  CAS  PubMed  Google Scholar 

  241. Dworzak, M. N. et al. Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: multicentric assessment is feasible. Cytom. B Clin. Cytom. 74, 331–340 (2008).

    Article  Google Scholar 

  242. Dworzak, M. N. et al. AIEOP-BFM consensus guidelines 2016 for flow cytometric immunophenoty** of pediatric acute lymphoblastic leukemia. Cytom. B Clin. Cytom. 94, 82–93 (2018).

    Article  Google Scholar 

  243. van Dongen, J. J., van der Velden, V. H., Bruggemann, M. & Orfao, A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood 125, 3996–4009 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Kalina, T. et al. EuroFlow standardization of flow cytometer instrument settings and immunophenoty** protocols. Leukemia 26, 1986–2010 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Ansuinelli, M. et al. Applicability of droplet digital polymerase chain reaction for minimal residual disease monitoring in Philadelphia-positive acute lymphoblastic leukaemia. Hematol. Oncol. 39, 680–686 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Short, N. J. et al. Ultrasensitive NGS MRD assessment in Ph+ ALL: prognostic impact and correlation with RT–PCR for BCR::ABL1. Am. J. Hematol. 98, 1196–1203 (2023).

    Article  CAS  PubMed  Google Scholar 

  247. Ribera, J. M. et al. Chemotherapy or allogeneic transplantation in high-risk Philadelphia chromosome-negative adult lymphoblastic leukemia. Blood 137, 1879–1894 (2021).

    Article  CAS  PubMed  Google Scholar 

  248. Dhedin, N. et al. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood 125, 2486–2496 (2015).

    Article  CAS  PubMed  Google Scholar 

  249. Pigneux, A. et al. Testing for minimal residual disease in adults with acute lymphoblastic leukemia in Europe: a clinician survey. BMC Cancer 18, 1100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Pui, C. H. et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncol. 16, 465–474 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Campana, D. & Leung, W. Clinical significance of minimal residual disease in patients with acute leukaemia undergoing haematopoietic stem cell transplantation. Br. J. Haematol. 162, 147–161 (2013).

    Article  PubMed  Google Scholar 

  252. Hunger, S. P. et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J. Clin. Oncol. 30, 1663–1669 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Gokbuget, N. Treatment of older patients with acute lymphoblastic leukaemia. Drugs Aging 35, 11–26 (2018).

    Article  PubMed  Google Scholar 

  254. Willemse, M. J. et al. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood 99, 4386–4393 (2002).

    Article  CAS  PubMed  Google Scholar 

  255. Tierens, A. et al. Consensus recommendations for MRD testing in adult B-cell acute lymphoblastic leukemia in Ontario. Curr. Oncol. 28, 1376–1387 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Bleyer, A. Important factors improving outcome of young adults with acute lymphoblastic leukemia (ALL). Best Pract. Res. Clin. Haematol. 34, 101322 (2021).

    Article  CAS  PubMed  Google Scholar 

  257. Basquiera, A. L. et al. Expert recommendations for the diagnosis, treatment, and management of adult B-cell acute lymphoblastic leukemia in Latin America. JCO Glob. Oncol. 9, e2200292 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Messinger, Y. H. et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) study. Blood 120, 285–290 (2012).

    Article  CAS  PubMed  Google Scholar 

  259. Teachey, D. T. et al. Children’s Oncology Group trial AALL1231: a phase III clinical trial testing bortezomib in newly diagnosed T-cell acute lymphoblastic leukemia and lymphoma. J. Clin. Oncol. 40, 2106–2118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Yilmaz, M., Kantarjian, H., Ravandi-Kashani, F., Short, N. J. & Jabbour, E. Philadelphia chromosome-positive acute lymphoblastic leukemia in adults: current treatments and future perspectives. Clin. Adv. Hematol. Oncol. 16, 216–223 (2018).

    PubMed  Google Scholar 

  261. Bonifant, C. L. & Tasian, S. K. The future of cellular immunotherapy for childhood leukemia. Curr. Opin. Pediatr. 32, 13–25 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Short, N. J., Kantarjian, H. & Jabbour, E. Optimizing the treatment of acute lymphoblastic leukemia in younger and older adults: new drugs and evolving paradigms. Leukemia 35, 3044–3058 (2021).

    Article  PubMed  Google Scholar 

  263. Pieters, R. et al. Outcome of infants younger than 1 year with acute lymphoblastic leukemia treated with the interfant-06 protocol: results from an international phase III randomized study. J. Clin. Oncol. 37, 2246–2256 (2019).

    Article  CAS  PubMed  Google Scholar 

  264. Moricke, A. et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 111, 4477–4489 (2008).

    Article  PubMed  Google Scholar 

  265. Vora, A. et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol. 14, 199–209 (2013).

    Article  CAS  PubMed  Google Scholar 

  266. Stock, W. et al. What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children’s Cancer Group and Cancer and Leukemia Group B studies. Blood 112, 1646–1654 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Boissel, N. et al. Should adolescents with acute lymphoblastic leukemia be treated as old children or young adults? Comparison of the French FRALLE-93 and LALA-94 trials. J. Clin. Oncol. 21, 774–780 (2003).

    Article  PubMed  Google Scholar 

  268. Toft, N. et al. Results of NOPHO ALL2008 treatment for patients aged 1–45 years with acute lymphoblastic leukemia. Leukemia 32, 606–615 (2018).

    Article  CAS  PubMed  Google Scholar 

  269. Huguet, F. et al. Intensified therapy of acute lymphoblastic leukemia in adults: report of the randomized GRAALL-2005 clinical trial. J. Clin. Oncol. 36, 2514–2523 (2018).

    Article  CAS  PubMed  Google Scholar 

  270. El Fakih, R. et al. Current paradigms in the management of Philadelphia chromosome positive acute lymphoblastic leukemia in adults. Am. J. Hematol. 93, 286–295 (2018).

    Article  CAS  PubMed  Google Scholar 

  271. Ravandi, F. How I treat Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 133, 130–136 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Gokbuget, N. et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood 131, 1522–1531 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Kantarjian, H. et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Kantarjian, H. M. et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N. Engl. J. Med. 375, 740–753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Smith, M. et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J. Clin. Oncol. 14, 18–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  276. Schultz, K. R. et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children’s Oncology Group study. J. Clin. Oncol. 27, 5175–5181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Jabbour, E. et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 5, e618–e627 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Foa, R. et al. Dasatinib–blinatumomab for Ph-positive acute lymphoblastic leukemia in adults. N. Engl. J. Med. 383, 1613–1623 (2020).

    Article  CAS  PubMed  Google Scholar 

  279. Roberts, K. G. et al. Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children’s Oncology Group. Blood 132, 815–824 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Harvey, R. C. et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 115, 5312–5321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Harvey, R. C. et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 116, 4874–4884 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Chen, I. M. et al. Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood 119, 3512–3522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Loh, M. L. et al. A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: a Children’s Oncology Group phase 1 consortium study (ADVL1011). Pediatr. Blood Cancer 62, 1717–1724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Tasian, S. K. et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood 120, 833–842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Goldberg, A. L. Development of proteasome inhibitors as research tools and cancer drugs. J. Cell Biol. 199, 583–588 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Raab, M. S., Podar, K., Breitkreutz, I., Richardson, P. G. & Anderson, K. C. Multiple myeloma. Lancet 374, 324–339 (2009).

    Article  PubMed  Google Scholar 

  287. Horton, T. M. et al. A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children’s Oncology Group study. Clin. Cancer Res. 13, 1516–1522 (2007).

    Article  CAS  PubMed  Google Scholar 

  288. Dunsmore, K. P. et al. Children’s Oncology Group AALL0434: a phase III randomized clinical trial testing nelarabine in newly diagnosed T-cell acute lymphoblastic leukemia. J. Clin. Oncol. 38, 3282–3293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Saygin, C. et al. Dual targeting of apoptotic and signaling pathways in T-lineage acute lymphoblastic leukemia. Clin. Cancer Res. 29, 3151–3161 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Aumann, S. et al. The emerging role of venetoclax-based treatments in acute lymphoblastic leukemia. Int. J. Mol. Sci. 23, 10957 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Frismantas, V. et al. Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood 129, e26–e37 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Peirs, S. et al. ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood 124, 3738–3747 (2014).

    Article  CAS  PubMed  Google Scholar 

  293. Pullarkat, V. A. et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancer Discov. 11, 1440–1453 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. DeAngelo, D. J. Nelarabine for the treatment of patients with relapsed or refractory T-cell acute lymphoblastic leukemia or lymphoblastic lymphoma. Hematol. Oncol. Clin. North Am. 23, 1121–1135 (2009).

    Article  PubMed  Google Scholar 

  295. Follini, E., Marchesini, M. & Roti, G. Strategies to overcome resistance mechanisms in T-cell acute lymphoblastic leukemia. Int. J. Mol. Sci. 20, 3021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Pemovska, T. et al. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov. 3, 1416–1429 (2013).

    Article  CAS  PubMed  Google Scholar 

  297. Gocho, Y. et al. Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. Nat. Cancer 2, 284–299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. La Starza, R. et al. Venetoclax and bortezomib in relapsed/refractory early T-cell precursor acute lymphoblastic leukemia. JCO Precis. Oncol. 3, PO.19.00172 (2019).

    PubMed  PubMed Central  Google Scholar 

  299. Lee, S. H. R. et al. Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response. Nat. Med. 29, 170–179 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Pikman, Y. et al. Matched targeted therapy for pediatric patients with relapsed, refractory, or high-risk leukemias: a report from the LEAP consortium. Cancer Discov. 11, 1424–1439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Kenkre, V. P. & Stock, W. Burkitt lymphoma/leukemia: improving prognosis. Clin. Lymphoma Myeloma 9, S231–S238 (2009).

    Article  PubMed  Google Scholar 

  302. Maury, S. et al. Rituximab in B-lineage adult acute lymphoblastic leukemia. N. Engl. J. Med. 375, 1044–1053 (2016).

    Article  CAS  PubMed  Google Scholar 

  303. Ribera, J. M. et al. Feasibility and outcomes after dose reduction of immunochemotherapy in young adults with Burkitt lymphoma and leukemia: results of the BURKIMAB14 trial. Haematologica 109, 543–552 (2024).

    Article  CAS  PubMed  Google Scholar 

  304. Park, E. S. et al. Treatment outcomes in children with Burkitt lymphoma and L3 acute lymphoblastic leukemia treated using the lymphoma malignancy B protocol at a single institution. Korean J. Hematol. 46, 96–102, (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Minard-Colin, V. et al. Rituximab for high-risk, mature B-cell non-hodgkin’s lymphoma in children. N. Engl. J. Med. 382, 2207–2219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Bride, K. L. et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood 131, 995–999 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Molle, I., Petruskevicius, I., Kamper, P. & d’Amore, F. Salvage therapy in early relapse of T-lymphoblastic leukemia/lymphoma using daratumumab/nelarabine combination: two consecutive cases. Case Rep. Hematol. 2022, 9722787 (2022).

    PubMed  PubMed Central  Google Scholar 

  308. Mathisen, M. S., Kantarjian, H., Thomas, D., O’Brien, S. & Jabbour, E. Acute lymphoblastic leukemia in adults: encouraging developments on the way to higher cure rates. Leuk. Lymphoma 54, 2592–2600 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. McNeer, J. L., Rau, R. E., Gupta, S., Maude, S. L. & O’Brien, M. M. Cutting to the front of the line: immunotherapy for childhood acute lymphoblastic leukemia. Am. Soc. Clin. Oncol. Educ. Book 40, 1–12 (2020).

    PubMed  Google Scholar 

  310. Wynne, J., Wright, D. & Stock, W. Inotuzumab: from preclinical development to success in B-cell acute lymphoblastic leukemia. Blood Adv. 3, 96–104 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Bhojwani, D. et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia 33, 884–892 (2019).

    Article  CAS  PubMed  Google Scholar 

  312. Kantarjian, H. M. et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer 125, 2474–2487 (2019).

    Article  CAS  PubMed  Google Scholar 

  313. Brown, P. A. et al. Effect of postreinduction therapy consolidation with blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-cell acute lymphoblastic leukemia: a randomized clinical trial. JAMA 325, 833–842, (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Locatelli, F. et al. Effect of blinatumomab vs chemotherapy on event-free survival among children with high-risk first-relapse B-cell acute lymphoblastic leukemia: a randomized clinical trial. JAMA 325, 843–854, (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. van der Sluis, I. M. et al. Blinatumomab added to chemotherapy in infant lymphoblastic leukemia. N. Engl. J. Med. 388, 1572–1581 (2023).

    Article  PubMed  Google Scholar 

  316. Litzow, M. R. et al. Consolidation therapy with blinatumomab improves overall survival in newly diagnosed adult patients with B-lineage acute lymphoblastic leukemia in measurable residual disease negative remission: results from the ECOG-ACRIN E1910 randomized phase III National Cooperative Clinical Trials Network Trial. Blood 140, LBA-1 (2022).

    Article  Google Scholar 

  317. Jabbour, E. et al. Ponatinib and blinatumomab for Philadelphia chromosome-positive acute lymphoblastic leukaemia: a US, single-centre, single-arm, phase 2 trial. Lancet Haematol. 10, e24–e34 (2023).

    Article  CAS  PubMed  Google Scholar 

  318. Chiaretti, S. et al. P353: forty months update of the gimema Lal2116 (D-Alba) protocol and ancillary Lal2217 study for newly diagnosed adult Ph+ ALL. HemaSphere 6, 253–254 (2022).

    Article  Google Scholar 

  319. Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Shah, B. D. et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 398, 491–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  321. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transpl. 25, 625–638 (2019).

    Article  CAS  Google Scholar 

  322. Dourthe, M. E. et al. Determinants of CD19-positive vs CD19-negative relapse after tisagenlecleucel for B-cell acute lymphoblastic leukemia. Leukemia 35, 3383–3393 (2021).

    Article  CAS  PubMed  Google Scholar 

  323. Pulsipher, M. A. et al. Next-generation sequencing of minimal residual disease for predicting relapse after tisagenlecleucel in children and young adults with acute lymphoblastic leukemia. Blood Cancer Discov. 3, 66–81 (2022).

    Article  CAS  PubMed  Google Scholar 

  324. Pillai, V. et al. CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior blinatumomab therapy. Blood Adv. 3, 3539–3549 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  325. Myers, R. M. et al. Blinatumomab nonresponse and high-disease burden are associated with inferior outcomes after CD19-CAR for B-ALL. J. Clin. Oncol. 40, 932–944 (2022).

    Article  CAS  PubMed  Google Scholar 

  326. Lamble, A. J. et al. Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells. Blood Adv. 7, 575–585 (2023).

    Article  CAS  PubMed  Google Scholar 

  327. Png, Y. T. et al. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Adv. 1, 2348–2360 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Chiesa, R. et al. Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia. N. Engl. J. Med. 389, 899–910 (2023).

    Article  CAS  PubMed  Google Scholar 

  329. Freiwan, A. et al. Engineering naturally occurring CD7-T cells for the immunotherapy of hematological malignancies. Blood 140, 2684–2696 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Wang, T. et al. Coadministration of CD19- and CD22-directed chimeric antigen receptor T-cell therapy in childhood B-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial. J. Clin. Oncol. 41, 1670–1683 (2023).

    Article  CAS  PubMed  Google Scholar 

  331. Benjamin, R. et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet 396, 1885–1894 (2020).

    Article  CAS  PubMed  Google Scholar 

  332. Snowden, J. A. et al. Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022. Bone Marrow Transpl. 57, 1217–1239 (2022).

    Article  Google Scholar 

  333. Gokbuget, N. et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood 120, 1868–1876 (2012).

    Article  PubMed  Google Scholar 

  334. Bassan, R. et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood 113, 4153–4162 (2009).

    Article  CAS  PubMed  Google Scholar 

  335. Giebel, S. et al. Hematopoietic stem cell transplantation for adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first remission: a position statement of the European Working Group for Adult Acute Lymphoblastic Leukemia (EWALL) and the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transpl. 54, 798–809 (2019).

    Article  Google Scholar 

  336. Hein, K., Short, N., Jabbour, E. & Yilmaz, M. Clinical value of measurable residual disease in acute lymphoblastic leukemia. Blood Lymphat. Cancer 12, 7–16 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Borowitz, M. J. et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood 111, 5477–5485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Peters, C., Locatelli, F. & Bader, P. in The EBMT Handbook (eds Carreras, E., Dufour, C., Mohty, M. & Kröger, N.) 539–545 (European Society for Blood and Marrow Transplantation, 2019).

  339. DeFilipp, Z. et al. Hematopoietic cell transplantation in the treatment of adult acute lymphoblastic leukemia: updated 2019 evidence-based review from the american society for transplantation and cellular therapy. Biol. Blood Marrow Transpl. 25, 2113–2123 (2019).

    Article  Google Scholar 

  340. Brissot, E. et al. Alternative donors provide comparable results to matched unrelated donors in patients with acute lymphoblastic leukemia undergoing allogeneic stem cell transplantation in second complete remission: a report from the EBMT Acute Leukemia Working Party. Bone Marrow Transpl. 55, 1763–1772 (2020).

    Article  CAS  Google Scholar 

  341. Pavlů, J. et al. Allogeneic hematopoietic cell transplantation for primary refractory acute lymphoblastic leukemia: a report from the Acute Leukemia Working Party of the EBMT. Cancer 123, 1965–1970 (2017).

    Article  PubMed  Google Scholar 

  342. Ab Rahman, S., Matic, T., Yordanova, M. & Ariffin, H. HLA-haploidentical family donors: the new promise for childhood acute lymphoblastic leukaemia? Front. Pediatr. 9, 758680 (2021).

    Article  PubMed  Google Scholar 

  343. Nagler, A. et al. Outcome of T-cell-replete haploidentical stem cell transplantation improves with time in adults with acute lymphoblastic leukemia: a study from the acute leukemia working party of the European Society for Blood and Marrow Transplantation. Cancer 127, 2507–2514 (2021).

    Article  CAS  PubMed  Google Scholar 

  344. Nishiwaki, S. et al. Utility of allogeneic stem cell transplantation for adult Ph+ ALL with complete molecular remission. Am. J. Hematol. 99, 806–815 (2024).

    Article  CAS  PubMed  Google Scholar 

  345. Logan, A. C. Measurable residual disease in acute lymphoblastic leukemia: how low is low enough? Best Pract. Res. Clin. Haematol. 35, 101407 (2022).

    Article  CAS  PubMed  Google Scholar 

  346. Peters, C. et al. Total body irradiation or chemotherapy conditioning in childhood ALL: a multinational, randomized, noninferiority phase III study. J. Clin. Oncol. 39, 295–307 (2021).

    Article  CAS  PubMed  Google Scholar 

  347. Handgretinger, R. & Lang, P. Could (should) we abandon total body irradiation for conditioning in children with leukemia. Blood Rev. 56, 100966 (2022).

    Article  PubMed  Google Scholar 

  348. Rousselot, P. et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood 128, 774–782 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Kantarjian, H. M., Vandendries, E. & Advani, A. S. Inotuzumab ozogamicin for acute lymphoblastic leukemia. N. Engl. J. Med. 375, 2100–2101 (2016).

    Article  PubMed  Google Scholar 

  350. Brissot, E. et al. Tyrosine kinase inhibitors improve long-term outcome of allogeneic hematopoietic stem cell transplantation for adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia. Haematologica 100, 392–399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Foa, R. et al. Long-term results of the dasatinib-blinatumomab protocol for adult Philadelphia-positive ALL. J. Clin. Oncol. https://doi.org/10.1200/JCO.23.01075 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  352. Kim, R. et al. Genetic alterations and MRD refine risk assessment for KMT2A-rearranged B-cell precursor ALL in adults: a GRAALL study. Blood 142, 1806–1817 (2023).

    Article  CAS  PubMed  Google Scholar 

  353. Buechner, J. et al. Chimeric antigen receptor T-cell therapy in paediatric B-cell precursor acute lymphoblastic leukaemia: curative treatment option or bridge to transplant? Front. Pediatr. 9, 784024 (2021).

    Article  PubMed  Google Scholar 

  354. Mohty, M. et al. CD19 chimeric antigen receptor-T cells in B-cell leukemia and lymphoma: current status and perspectives. Leukemia 33, 2767–2778 (2019).

    Article  PubMed  Google Scholar 

  355. Pemberton-Whiteley, Z. et al. Understanding quality of life in patients with acute leukemia, a global survey. J. Patient Cent. Res. Rev. 10, 21–30 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  356. Miller, L. H. et al. A natural history study of nitrous oxide versus propofol-assisted intrathecal therapy in the treatment of acute lymphoblastic leukemia. Pediatr. Blood Cancer 69, e29598 (2022).

    Article  CAS  PubMed  Google Scholar 

  357. Boissel, N. New developments in ALL in AYA. Hematol. Am. Soc. Hematol. Educ. Program. 2022, 190–196 (2022).

    Article  Google Scholar 

  358. Moler, F. W. et al. Therapeutic hypothermia after in-hospital cardiac arrest in children. N. Engl. J. Med. 376, 318–329 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  359. Iihara, H. et al. Control of chemotherapy-induced nausea in patients receiving outpatient cancer chemotherapy. Int. J. Clin. Oncol. 21, 409–418 (2016).

    Article  CAS  PubMed  Google Scholar 

  360. Wiser, W. & Berger, A. Practical management of chemotherapy-induced nausea and vomiting. Oncology 19, 637–645 (2005).

    PubMed  Google Scholar 

  361. Holdsworth, M. T., Raisch, D. W. & Frost, J. Acute and delayed nausea and emesis control in pediatric oncology patients. Cancer 106, 931–940 (2006).

    Article  PubMed  Google Scholar 

  362. Holdsworth, M. T., Raisch, D. W., Winter, S. S. & Chavez, C. M. Assessment of the emetogenic potential of intrathecal chemotherapy and response to prophylactic treatment with ondansetron. Support. Care Cancer 6, 132–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  363. Tanner, L. R. & Hooke, M. C. Improving body function and minimizing activity limitations in pediatric leukemia survivors: the lasting impact of the Stoplight Program. Pediatr. Blood Cancer 66, e27596 (2019).

    Article  PubMed  Google Scholar 

  364. Tanner, L. R., Sencer, S., Gossai, N., Watson, D. & Hooke, M. C. CREATE childhood cancer rehabilitation program development: increase access through interprofessional collaboration. Pediatr. Blood Cancer 69, e29912 (2022).

    Article  PubMed  Google Scholar 

  365. Gallardo-Rodriguez, A. G., Fuchs-Tarlovsky, V., Ocharan-Hernandez, M. E. & Ramos-Penafiel, C. O. Cross-training and resistance training in adults with type B acute lymphoblastic leukemia during the induction phase: a randomized blind pilot study. J. Clin. Med. 12, 5008 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  366. Ferraz, A., Santos, M. & Pereira, M. G. Parental distress in childhood acute lymphoblastic leukemia: a systematic review of the literature. J. Fam. Psychol. 38, 149–160 (2023).

    Article  PubMed  Google Scholar 

  367. Brown, T., Ramocan, S., Block, R. & Poage, W. Adolescent young adult acute lymphoblastic leukemia survivors develop innovative solutions for unmet needs. J. Adolesc. Young. Adult Oncol. 12, 900–905 (2023).

    Article  PubMed  Google Scholar 

  368. Asselin, B. L. et al. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed T-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-Hodgkin lymphoma: a report of the Children’s Oncology Group randomized trial Pediatric Oncology Group 9404. J. Clin. Oncol. 34, 854–862 (2016).

    Article  CAS  PubMed  Google Scholar 

  369. Winick, N. J. et al. Secondary acute myeloid leukemia in children with acute lymphoblastic leukemia treated with etoposide. J. Clin. Oncol. 11, 209–217 (1993).

    Article  CAS  PubMed  Google Scholar 

  370. Yang, J. J. et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J. Clin. Oncol. 33, 1235–1242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Chalandon, Y. et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood 125, 3711–3719 (2015).

    Article  CAS  PubMed  Google Scholar 

  372. Forgeard, N. et al. Sexuality- and fertility-related issues in women after allogeneic hematopoietic stem cell transplantation. Transplant. Cell. Ther. 27, 432 e431–432 e436 (2021).

    Google Scholar 

  373. Gupta, S. et al. Racial and ethnic disparities in childhood and young adult acute lymphocytic leukaemia: secondary analyses of eight Children’s Oncology Group cohort trials. Lancet Haematol. 10, e129–e141 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Wadhwa, A. et al. Poverty and relapse risk in children with acute lymphoblastic leukemia: a Children’s Oncology Group study AALL03N1 report. Blood 142, 221–229 (2023).

    CAS  PubMed  Google Scholar 

  375. Gramatges, M. M. Poverty and health equity in childhood leukemia. Blood 142, 211–212 (2023).

    Article  CAS  PubMed  Google Scholar 

  376. Saint Fleur-Lominy, S. et al. Evolution of the epigenetic landscape in childhood B acute lymphoblastic leukemia and its role in drug resistance. Cancer Res. 80, 5189–5202 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  377. Geng, H. et al. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discov. 2, 1004–1023 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Touzart, A. et al. Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Sci. Transl. Med. 13, eabc4834 (2021).

    Article  CAS  PubMed  Google Scholar 

  379. Gojo, I. et al. Phase II study of the cyclin-dependent kinase (CDK) inhibitor dinaciclib (SCH 727965) in patients with advanced acute leukemias. Blood 116, 3287 (2010).

    Article  Google Scholar 

  380. Bride, K. L. et al. Rational drug combinations with CDK4/6 inhibitors in acute lymphoblastic leukemia. Haematologica 107, 1746–1757 (2022).

    Article  CAS  PubMed  Google Scholar 

  381. De Dominici, M. et al. Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and -independent effects by CDK6-specific PROTACs. Blood 135, 1560–1573 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  382. Daver, N. et al. A Phase I/II study of the mTOR inhibitor everolimus in combination with hyperCVAD chemotherapy in patients with relapsed/refractory acute lymphoblastic leukemia. Clin. Cancer Res. 21, 2704–2714 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Palmisiano, N. et al. Maximal tolerated dose determined for venetoclax in combination with liposomal vincristine in patients with relapsed or refractory Ph-negative T-cell or B-cell acute lymphoblastic leukemia: results of phase 1 portion of ECOG-ACRIN EA9152. Blood 138, 3407 (2021).

    Article  Google Scholar 

  384. Venugopal, S. et al. A phase II study of mini-hyper-CVD plus venetoclax in patients with Philadelphia chromosome-negative acute lymphoblastic leukemia. Blood 138, 1239 (2021).

    Article  Google Scholar 

  385. Issa, G. C. et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature 615, 920–924 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Dickerson, K. M. et al. ZNF384 fusion oncoproteins drive lineage aberrancy in acute leukemia. Blood Cancer Discov. 3, 240–263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Roti, G. et al. Leukemia-specific delivery of mutant NOTCH1 targeted therapy. J. Exp. Med. 215, 197–216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Marchesini, M. et al. Blockade of oncogenic NOTCH1 with the SERCA inhibitor CAD204520 in T cell acute lymphoblastic leukemia. Cell Chem. Biol. 27, 678–697 e613 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Pagliaro, L. et al. CAD204520 targets NOTCH1 PEST domain mutations in lymphoproliferative disorders. Int. J. Mol. Sci. 25, 766 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Hanna, G. J. et al. A phase I study of the pan-notch inhibitor CB-103 for patients with advanced adenoid cystic carcinoma and other tumors. Cancer Res. Commun. 3, 1853–1861 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Medinger, M. et al. CB-103: a novel CSL-NICD inhibitor for the treatment of NOTCH-driven T-cell acute lymphoblastic leukemia: a case report of complete clinical response in a patient with relapsed and refractory T-ALL. EJHaem 3, 1009–1012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Peters, C. & Brown, S. Antibody–drug conjugates as novel anti-cancer chemotherapeutics. Biosci. Rep. 35, e00225 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  393. Yasunaga, M., Manabe, S. & Matsumura, Y. Immunoregulation by IL-7R-targeting antibody-drug conjugates: overcoming steroid-resistance in cancer and autoimmune disease. Sci. Rep. 7, 10735 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  394. Zhang, Y. et al. Allogenic and autologous anti-CD7 CAR-T cell therapies in relapsed or refractory T-cell malignancies. Blood Cancer J. 13, 61 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  395. Speleman, F. et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 19, 358–366 (2005).

    Article  CAS  PubMed  Google Scholar 

  396. **a, Y. et al. TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc. Natl Acad. Sci. USA 88, 11416–11420 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Mellentin, J. D., Smith, S. D. & Cleary, M. L. lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 58, 77–83 (1989).

    Article  CAS  PubMed  Google Scholar 

  398. Wang, J. et al. The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. Proc. Natl Acad. Sci. USA 97, 3497–3502 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. McGuire, E. A. et al. The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol. Cell Biol. 9, 2124–2132 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  400. Van Vlierberghe, P. et al. The recurrent SET–NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood 111, 4668–4680 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  401. Hu, S. et al. Whole-genome noncoding sequence analysis in T-cell acute lymphoblastic leukemia identifies oncogene enhancer mutations. Blood 129, 3264–3268 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. Le Noir, S. et al. Extensive molecular map** of TCRα/δ- and TCRβ-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL. Blood 120, 3298–3309 (2012).

    Article  PubMed  Google Scholar 

  403. Asnafi, V. et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRγδ lineage. Blood 102, 1000–1006 (2003).

    Article  CAS  PubMed  Google Scholar 

  404. Ferrando, A. A. et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 102, 262–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  405. Goossens, S. et al. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat. Commun. 6, 5794 (2015).

    Article  CAS  PubMed  Google Scholar 

  406. Clappier, E. et al. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 110, 1251–1261 (2007).

    Article  CAS  PubMed  Google Scholar 

  407. Lange, B. J. et al. Pediatric leukemia/lymphoma with t(8;14)(q24;q11). Leukemia 6, 613–618 (1992).

    CAS  PubMed  Google Scholar 

  408. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  409. Clappier, E. et al. Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias. Leukemia 20, 82–86 (2006).

    Article  CAS  PubMed  Google Scholar 

  410. Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA 95, 8292–8297 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Remke, M. et al. High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF-β and PI3K-AKT pathways and deletions at 6q15–16.1 as a genomic marker for unfavorable early treatment response. Blood 114, 1053–1062 (2009).

    Article  CAS  PubMed  Google Scholar 

  412. Tosello, V. et al. WT1 mutations in T-ALL. Blood 114, 1038–1045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Gutierrez, A. et al. Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. Blood 115, 2845–2851 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  414. Van Vlierberghe, P. et al. ETV6 mutations in early immature human T cell leukemias. J. Exp. Med. 208, 2571–2579 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  415. De Keersmaecker, K. et al. The TLX1 oncogene drives aneuploidy in T cell transformation. Nat. Med. 16, 1321–1327 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  416. Gutierrez, A. et al. The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood 118, 4169–4173 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  417. Montefiori, L. E. et al. Enhancer hijacking drives oncogenic BCL11B expression in lineage-ambiguous stem cell leukemia. Cancer Discov. 11, 2846–2867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Della Gatta, G. et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat. Med. 18, 436–440 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  419. Grossmann, V. et al. The molecular profile of adult T-cell acute lymphoblastic leukemia: mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL. Genes Chromosomes Cancer 52, 410–422 (2013).

    Article  CAS  PubMed  Google Scholar 

  420. Simonin, M. et al. IKZF1 alterations predict poor prognosis in adult and pediatric T-ALL. Blood 137, 1690–1694 (2021).

    Article  CAS  PubMed  Google Scholar 

  421. Gutierrez, A. et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 114, 647–650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Mendes, R. D. et al. PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. Blood 124, 567–578 (2014).

    Article  CAS  PubMed  Google Scholar 

  423. Tottone, L. et al. A tumor suppressor enhancer of PTEN in T-cell development and leukemia. Blood Cancer Discov. 2, 92–109 (2021).

    Article  PubMed  Google Scholar 

  424. Graux, C. et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat. Genet. 36, 1084–1089 (2004).

    Article  CAS  PubMed  Google Scholar 

  425. De Keersmaecker, K. et al. Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). Blood 105, 4849–4852 (2005).

    Article  PubMed  Google Scholar 

  426. Van Limbergen, H. et al. Molecular cytogenetic and clinical findings in ETV6/ABL1-positive leukemia. Genes Chromosomes Cancer 30, 274–282 (2001).

    Article  PubMed  Google Scholar 

  427. Bar-Eli, M., Ahuja, H., Foti, A. & Cline, M. J. N-RAS mutations in T-cell acute lymphocytic leukaemia: analysis by direct sequencing detects a novel mutation. Br. J. Haematol. 72, 36–39 (1989).

    Article  CAS  PubMed  Google Scholar 

  428. Kleppe, M. et al. Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat. Genet. 42, 530–535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Balgobind, B. V. et al. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood 111, 4322–4328 (2008).

    Article  CAS  PubMed  Google Scholar 

  430. Asnafi, V. et al. JAK1 mutations are not frequent events in adult T-ALL: a GRAALL study. Br. J. Haematol. 148, 178–179 (2010).

    Article  PubMed  Google Scholar 

  431. Flex, E. et al. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J. Exp. Med. 205, 751–758 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Lacronique, V. et al. A TEL–JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312 (1997).

    Article  CAS  PubMed  Google Scholar 

  433. Paietta, E. et al. Activating FLT3 mutations in CD117/KIT+ T-cell acute lymphoblastic leukemias. Blood 104, 558–560 (2004).

    Article  CAS  PubMed  Google Scholar 

  434. Shochat, C. et al. Gain-of-function mutations in interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic leukemias. J. Exp. Med. 208, 901–908 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Zenatti, P. P. et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat. Genet. 43, 932–939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Karrman, K. et al. The t(X;7)(q22;q34) in paediatric T-cell acute lymphoblastic leukaemia results in overexpression of the insulin receptor substrate 4 gene through illegitimate recombination with the T-cell receptor beta locus. Br. J. Haematol. 144, 546–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  437. Van Vlierberghe, P. et al. Prognostic relevance of integrated genetic profiling in adult T-cell acute lymphoblastic leukemia. Blood 122, 74–82 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  438. Béné, M. C. et al. Immunophenoty** of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10. Leukemia 25, 567–574 (2011).

    Article  PubMed  Google Scholar 

  439. Niehues, T. et al. A classification based on T cell selection-related phenotypes identifies a subgroup of childhood T-ALL with favorable outcome in the COALL studies. Leukemia 13, 614–617 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge anyone who faced or faces a diagnosis of ALL. You did not suffer in vain. Your voices were heard. Your lives mattered more than you may know. You will always be remembered by the families who supported you, your friends who stood by your side and the health-care teams who cured when they could, healed when they could not, and try to comfort always; yesterday, today and tomorrow.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (G.R. and L.P.); Epidemiology (G.R. and L.P.); Mechanisms/pathophysiology (G.R., C.G.M., S.-J.C., D.H., M.Z. and Z.C.); Diagnosis, screening and prevention (G.R., C.M., C.J.H. and L.P.); Management (G.R., S.S.W. and N.B.); Quality of life (G.R. and S.S.W.); Outlook (G.R. and S.S.W.).

Corresponding author

Correspondence to Giovanni Roti.

Ethics declarations

Competing interests

C.G.M. has received research funding from Pfizer and AbbVie, has stock in Amgen, and is on an advisory board for Illumina.

Peer review

Peer review information

Nature Reviews Disease Primers thanks T. Szczepański; D. Sinnett; V. Conter; I. Aldoss, who co-reviewed with S. Forman; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagliaro, L., Chen, SJ., Herranz, D. et al. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 10, 41 (2024). https://doi.org/10.1038/s41572-024-00525-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00525-x

  • Springer Nature Limited

Navigation