Log in

Carpal tunnel syndrome

  • Primer
  • Published:

From Nature Reviews Disease Primers

View current issue Sign up to alerts

Abstract

Carpal tunnel syndrome (CTS) is the most common nerve entrapment disorder worldwide. The epidemiology and risk factors, including family burden, for develo** CTS are multi-factorial. Despite much research, its intricate pathophysiological mechanism(s) are not fully understood. An underlying subclinical neuropathy may indicate an increased susceptibility to develo** CTS. Although surgery is often performed for CTS, clear international guidelines to indicate when to perform non-surgical or surgical treatment, based on stage and severity of CTS, remain to be elucidated. Neurophysiological examination, using electrophysiology or ultrasonography, performed in certain circumstances, should correlate with the history and findings in clinical examination of the person with CTS. History and clinical examination are particularly relevant globally owing to lack of other equipment. Various instruments are used to assess CTS and treatment outcomes as well as the effect of the disorder on quality of life. The surgical treatment options of CTS — open or endoscopic — offer an effective solution to mitigate functional impairments and pain. However, there are risks of post-operative persistent or recurrent symptoms, requiring meticulous diagnostic re-evaluation before any additional surgery. Health-care professionals should have increased awareness about CTS and all its implications. Future considerations of CTS include use of linked national registries to understand risk factors, explore possible screening methods, and evaluate diagnosis and treatment with a broader perspective beyond surgery, including psychological well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1: A biopsychosocial model and risk factors related to CTS.
Fig. 2: The anatomy of the carpal tunnel with the flexor retinaculum.
Fig. 3: Schematic drawing with a microanatomical view of a peripheral nerve.
Fig. 4: Nanotomographic images of nerve fibres from a posterior interosseous nerve in a person with diabetes mellitus and CTS.
Fig. 5: Peroperative findings in surgery for CTS.
Fig. 6: Pathophysiological events in a nerve entrapment disorder.
Fig. 7: Clinical tests for median nerve function in CTS.
Fig. 8: Ultrasonography images of the median nerve.

Similar content being viewed by others

References

  1. Malakootian, M., Soveizi, M., Gholipour, A. & Oveisee, M. Pathophysiology, diagnosis, treatment, and genetics of carpal tunnel syndrome: a review. Cell. Mol. Neurobiol. 43, 1817–1831 (2023). A review of carpal tunnel syndrome (CTS), extending from pathophysiology to treatment of the condition with focus on genetics and molecular pathways.

    Article  PubMed  Google Scholar 

  2. Atroshi, I. et al. Prevalence of carpal tunnel syndrome in a general population. JAMA 282, 153–158 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Atroshi, I., Englund, M., Turkiewicz, A., Tagil, M. & Petersson, I. F. Incidence of physician-diagnosed carpal tunnel syndrome in the general population. Arch. Intern. Med. 171, 943–944 (2011).

    Article  PubMed  Google Scholar 

  4. Tadjerbashi, K., Akesson, A. & Atroshi, I. Incidence of referred carpal tunnel syndrome and carpal tunnel release surgery in the general population: increase over time and regional variations. J. Orthop. Surg. 27, 2309499019825572 (2019).

    Article  Google Scholar 

  5. Phalen, G. S. The carpal-tunnel syndrome. Seventeen years’ experience in diagnosis and treatment of six hundred fifty-four hands. J. Bone Joint Surg. Am. 48, 211–228 (1966).

    Article  CAS  PubMed  Google Scholar 

  6. Engel, G. L. The clinical application of the biopsychosocial model. Am. J. Psychiat. 137, 535–544 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Borrell-Carrio, F., Suchman, A. L. & Epstein, R. M. The biopsychosocial model 25 years later: principles, practice, and scientific inquiry. Ann. Fam. Med. 2, 576–582 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Engel, G. L. The need for a new medical model: a challenge for biomedicine. Science 196, 129–136 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. Whelpley, C. E., Holladay-Sandidge, H. D., Woznyj, H. M. & Banks, G. C. The biopsychosocial model and neurodiversity: a person-centered approach. Ind. Organ. Psychol. 16, 25–30 (2023).

    Article  Google Scholar 

  10. Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief. Bioinform. 19, 286–302 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Wiberg, A. et al. A genome-wide association analysis identifies 16 novel susceptibility loci for carpal tunnel syndrome. Nat. Commun. 10, 1030 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wiberg, A. et al. Genetic correlations between migraine and carpal tunnel syndrome. Plast. Reconstr. Surg. https://doi.org/10.1097/PRS.0000000000010976 (2023).

    Article  PubMed  Google Scholar 

  13. Lundborg, G., Gelberman, R. H., Minteer-Convery, M., Lee, Y. E. & Hargens, A. R. Median nerve compression in the carpal tunnel—functional response to experimentally induced controlled pressure. J. Hand Surg. 7, 252–259 (1982).

    Article  CAS  Google Scholar 

  14. Gelberman, R. H., Rydevik, B. L., Pess, G. M., Szabo, R. M. & Lundborg, G. Carpal tunnel syndrome. A scientific basis for clinical care. Orthop. Clin. North. Am. 19, 115–124 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Caliandro, P. et al. A new clinical scale to grade the impairment of median nerve in carpal tunnel syndrome. Clin. Neurophysiol. 121, 1066–1071 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. National Research Council & Institute of Medicine. Musculoskeletal Disorders and the Workplace: Low Back and Upper Extremities (National Academies Press, 2001).

  17. Armstrong, T. J. et al. A conceptual model for work-related neck and upper-limb musculoskeletal disorders. Scand. J. Work. Environ. Health 19, 73–84 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Katz, J., Gelberman, R., Wright, E., Lew, R. & Liang, M. Responsiveness of self-reported and objective measures of disease severity in carpal tunnel syndrome. Med. Care 32, 1127–1133 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Mollestam, K., Rosales, R. S., Lyren, P. E. & Atroshi, I. Measuring symptoms severity in carpal tunnel syndrome: score agreement and responsiveness of the Atroshi–Lyren 6-item symptoms scale and the Boston symptom severity scale. Qual. Life Res. 31, 1553–1560 (2022).

    Article  PubMed  Google Scholar 

  20. Bennett, O. M. & Sears, E. D. The impact of reference standard on diagnostic testing characteristics for carpal tunnel syndrome: a systematic review. Plast. Reconstr. Surg. Glob. Open 11, e5067 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schwabl, C. et al. Nerve entrapment syndromes: detection by ultrasound. Ultrasonography 42, 376–387 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Graesser, E. A., Dy, C. J. & Brogan, D. M. Future considerations in the diagnosis and treatment of compressive neuropathies of the upper extremity. J. Hand Surg. Glob. Online 5, 536–546 (2023).

    Article  PubMed  Google Scholar 

  23. Evans, A. G. et al. Can diffusion tensor imaging apparent diffusion coefficient diagnose carpal tunnel syndrome? A systematic review and meta-analysis. Hand 18, 91S–99S (2023).

    Article  PubMed  Google Scholar 

  24. Jacob, L. et al. Association between carpal tunnel syndrome and the five-year incidence of anxiety disorder and depression in adults followed in general practices in Germany. J. Psychosom. Res. 173, 111469 (2023). A study with a large number of participants, analysing the epidemiological associations of CTS with anxiety and depression disorders.

    Article  PubMed  Google Scholar 

  25. Dahlin, L. B., Perez, R., Nyman, E., Zimmerman, M. & Merlo, J. Carpal tunnel syndrome and ulnar nerve entrapment are associated with impaired psychological health in adults as appraised by their increased use of psychotropic medication. J. Clin. Med. 11, 3871 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dahlin, L. B., Perez, R., Nyman, E., Zimmerman, M. & Merlo, J. Overuse of the psychoactive analgesics’ opioids and gabapentinoid drugs in patients having surgery for nerve entrapment disorders. Sci. Rep. 13, 16248 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shetty, P. N., Sanghavi, K. K., Mete, M. & Giladi, A. M. Prescription opioids and patient-reported outcomes and satisfaction after carpal tunnel release surgery. Hand 18, 772–779 (2023).

    Article  PubMed  Google Scholar 

  28. Mansfield, M., Thacker, M. & Sandford, F. Psychosocial risk factors and the association with carpal tunnel syndrome: a systematic review. Hand 13, 501–508 (2018).

    Article  PubMed  Google Scholar 

  29. Yoshida, A., Iwatsuki, K., Hoshiyama, M. & Hirata, H. Disturbance of somatotopic spatial cognition and extra-territorial pain in carpal tunnel syndrome. NeuroRehabilitation 46, 423–431 (2020).

    Article  PubMed  Google Scholar 

  30. Upton, A. R. M. & McComas, A. J. The double crush in nerve entrapment syndromes. Lancet 2, 359–362 (1973).

    Article  CAS  PubMed  Google Scholar 

  31. Brown, R. A. et al. Carpal tunnel release: a prospective randomized assessment of open and endoscopic methods. J. Bone Joint Surg. Am. 75A, 1265–1275 (1993).

    Article  Google Scholar 

  32. Brodeur, P. G., Raducha, J. E., Patel, D. D., Cruz, A. I. Jr. & Gil, J. A. Cost drivers in carpal tunnel release surgery: an analysis of 8,717 patients in New York state. J. Hand Surg. Am. 47, 258–265.e251 (2022).

    Article  PubMed  Google Scholar 

  33. Zimmerman, M. et al. Outcome after carpal tunnel release: impact of factors related to metabolic syndrome. J. Plast. Surg. Hand Surg. 51, 165–171 (2017).

    Article  PubMed  Google Scholar 

  34. Boyle, R. P., Sharan, J. & Schwartz, G. Carpal tunnel syndrome in transthyretin cardiac amyloidosis: implications and protocol for diagnosis and treatment. Cureus 13, e14546 (2021).

    PubMed  PubMed Central  Google Scholar 

  35. Zegri-Reiriz, I. et al. Prevalence of cardiac amyloidosis in patients with carpal tunnel syndrome. J. Cardiovasc. Transl. Res. 12, 507–513 (2019).

    Article  PubMed  Google Scholar 

  36. Mulder, D. W., Lambert, L. H., Bastrom, J. A. & Sprague, R. G. The neuropathies associated with diabetes mellitus. A clinical and electromyographic study of 103 unselected diabetic patients. Neurology 11, 275–284 (1961).

    Article  Google Scholar 

  37. Thomsen, N. O., Mojaddidi, M., Malik, R. A. & Dahlin, L. B. Reduced myelinated nerve fibre and endoneurial capillary densities in the forearm of diabetic and non-diabetic patients with carpal tunnel syndrome. Acta Neuropathol. 118, 785–791 (2009).

    Article  PubMed  Google Scholar 

  38. Dahlin, L. B., Meiri, K. F., McLean, W. G., Rydevik, B. & Sjöstrand, J. Effects of nerve compression on fast axonal transport in streptozotocin-induced diabetes mellitus. Diabetologia 29, 181–185 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Rydberg, M. et al. Diabetes mellitus as a risk factor for compression neuropathy: a longitudinal cohort study from southern Sweden. BMJ Open Diabetes Res. Care 8, e001298 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yesuf, T., Aragie, H. & Asmare, Y. Prevalence of carpal tunnel syndrome and its associated factors among patients with musculoskeletal compliant at Dilchora Referral Hospitals in Dire Dawa administration, Eastern Ethiopia, 2022. Preprint at medRxiv https://doi.org/10.1101/2023.02.10.23285779 (2023).

    Article  Google Scholar 

  41. Middleton, S. D. & Anakwe, R. E. Carpal tunnel syndrome. BMJ 349, g6437 (2014).

    Article  PubMed  Google Scholar 

  42. Bland, J. D. Carpal tunnel syndrome. BMJ 335, 343–346 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zimmerman, M., Gottsater, A. & Dahlin, L. B. Carpal tunnel syndrome and diabetes—a comprehensive review. J. Clin. Med. 11, 1674 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chompoopong, P. & Preston, D. C. Neuromuscular ultrasound findings in carpal tunnel syndrome with symptoms mainly in the nondominant hand. Muscle Nerve 63, 661–667 (2021).

    Article  PubMed  Google Scholar 

  45. Hulkkonen, S. et al. Incidence and operations of median, ulnar and radial entrapment neuropathies in Finland: a nationwide register study. J. Hand Surg. Eur. 45, 226–230 (2020).

    Article  Google Scholar 

  46. Johnson, N. A., Darwin, O., Chasiouras, D., Selby, A. & Bainbridge, C. The effect of social deprivation on the incidence rate of carpal and cubital tunnel syndrome surgery. J. Hand Surg. Eur. 46, 265–269 (2021).

    Article  Google Scholar 

  47. Latinovic, R., Gulliford, M. C. & Hughes, R. A. Incidence of common compressive neuropathies in primary care. J. Neurol. Neurosurg. Psychiat. 77, 263–265 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wilson, J. K. & Sevier, T. L. A review of treatment for carpal tunnel syndrome. Disabil. Rehabil. 25, 113–119 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Shiri, R., Pourmemari, M. H., Falah-Hassani, K. & Viikari-Juntura, E. The effect of excess body mass on the risk of carpal tunnel syndrome: a meta-analysis of 58 studies. Obes. Rev. 16, 1094–1104 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Wiberg, A. et al. Replication of epidemiological associations of carpal tunnel syndrome in a UK population-based cohort of over 400,000 people. J. Plast. Reconstr. Aesthet. Surg. 75, 1034–1040 (2022). A large study using the UK Biobank, with a cohort of >500,000 participants, analysing the associations between CTS and female sex, raised BMI and three systemic diseases (diabetes, rheumatoid arthritis and hypothyroidism).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hassan, A., Beumer, A., Kuijer, P. & van der Molen, H. F. Work-relatedness of carpal tunnel syndrome: systematic review including meta-analysis and GRADE. Health Sci. Rep. 5, e888 (2022). A systematic review of prospective cohort studies that indicated a high likelihood of CTS related to specific work-related risk factors.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sandy-Hindmarch, O. et al. Systemic inflammatory markers in neuropathic pain, nerve injury, and recovery. Pain 163, 526–537 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vernick, R. C., Beckwitt, C. H. & Fowler, J. R. Subjective and objective differences in patients with unilateral and bilateral carpal tunnel syndrome and the role of obesity in syndrome severity. Plast. Reconstr. Surg. 153, 423–429 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Lee, K. H., Lee, C. H., Lee, B. G., Park, J. S. & Choi, W. S. The incidence of carpal tunnel syndrome in patients with rheumatoid arthritis. Int. J. Rheum. Dis. 18, 52–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Pourmemari, M. H. & Shiri, R. Diabetes as a risk factor for carpal tunnel syndrome: a systematic review and meta-analysis. Diabet. Med. 33, 10–16 (2016). A systematic review and meta-analysis showing that both type 1 diabetes and type 2 diabetes are risk factors for CTS.

    Article  CAS  PubMed  Google Scholar 

  56. Daliri, M., Johnston, T. P. & Sahebkar, A. Statins and peripheral neuropathy in diabetic and non-diabetic cases: a systematic review. J. Pharm. Pharmacol. 75, 593–611 (2023).

    Article  PubMed  Google Scholar 

  57. Rydberg, M. et al. Diabetic hand: prevalence and incidence of diabetic hand problems using data from 1.1 million inhabitants in southern Sweden. BMJ Open Diabetes Res. Care 10, e002614 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Alotaibi, S. N. S. et al. The prevalence and patterns of carpal tunnel syndrome and their associated risk factors among diabetic population in south-west of Kingdom of Saudi Arabia. Egypt. J. Hosp. Med. 70, 152–1158 (2018).

    Google Scholar 

  59. Bekele, A. et al. Prevalence and associated factors of carpal tunnel syndrome among diabetic patients in Arba Minch General Hospital, South West Ethiopia, 2021. Diabetes Metab. Syndr. Obes. 15, 983–993 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Emdin, M. et al. Treatment of cardiac transthyretin amyloidosis: an update. Eur. Heart J. 40, 3699–3706 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Garcia-Pavia, P. et al. Diagnosis and treatment of cardiac amyloidosis. A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. J. Heart Fail. 23, 512–526 (2021).

    Article  PubMed  Google Scholar 

  62. Lauppe, R. E. et al. Nationwide prevalence and characteristics of transthyretin amyloid cardiomyopathy in Sweden. Open Heart 8, e001755 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Donnelly, J. P., Hanna, M., Sperry, B. W. & Seitz, W. H. Jr. Carpal tunnel syndrome: a potential early, red-flag sign of amyloidosis. J. Hand Surg. Am. 44, 868–876 (2019).

    Article  PubMed  Google Scholar 

  64. Gray, A. M., Patel, A. C., Kaplan, F. T. D., Merrell, G. A. & Greenberg, J. A. Occult amyloid deposition in older patients presenting with bilateral carpal tunnel syndrome or multiple trigger digits. J. Hand Surg. Am. https://doi.org/10.1016/j.jhsa.2023.05.008 (2023).

    Article  PubMed  Google Scholar 

  65. Nyrhi, L. et al. Incidence of peripheral nerve decompression surgery during pregnancy and the first year after delivery in Finland From 1999 to 2017: a retrospective register-based cohort study. J. Hand Surg. Am. 48, 452–459 (2023).

    Article  PubMed  Google Scholar 

  66. Padua, L. et al. Systematic review of pregnancy-related carpal tunnel syndrome. Muscle Nerve 42, 697–702 (2010).

    Article  PubMed  Google Scholar 

  67. Padua, L. et al. Carpal tunnel syndrome: updated evidence and new questions. Lancet Neurol. 22, 255–267 (2023).

    Article  PubMed  Google Scholar 

  68. Mondelli, M. et al. Anthropometric measurements as a screening test for carpal tunnel syndrome: receiver operating characteristic curves and accuracy. Arthritis Care Res. 67, 691–700 (2015).

    Article  Google Scholar 

  69. Nilsson, P. M., Nilsson, J. A. & Berglund, G. Family burden of cardiovascular mortality: risk implications for offspring in a national register linkage study based upon the Malmo Preventive Project. J. Intern. Med. 255, 229–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Jowell, A. R. et al. Genetic and clinical factors underlying a self-reported family history of heart disease. Eur. J. Prev. Cardiol. 30, 1571–1579 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Richardson, T. G., Urquijo, H., Holmes, M. V. & Davey Smith, G. Leveraging family history data to disentangle time-varying effects on disease risk using lifecourse Mendelian randomization. Eur. J. Epidemiol. 38, 765–769 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fedorowski, A. et al. Risk factors for syncope associated with multigenerational relatives with a history of syncope. JAMA Netw. Open. 4, e212521 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Barcenilla, A., March, L. M., Chen, J. S. & Sambrook, P. N. Carpal tunnel syndrome and its relationship to occupation: a meta-analysis. Rheumatology 51, 250–261 (2012).

    Article  PubMed  Google Scholar 

  74. Harris-Adamson, C. et al. Personal and workplace psychosocial risk factors for carpal tunnel syndrome: a pooled study cohort. Occup. Environ. Med. 70, 529–537 (2013).

    Article  PubMed  Google Scholar 

  75. Sun, P. O. et al. Influence of illness perceptions, psychological distress and pain catastrophizing on self-reported symptom severity and functional status in patients with carpal tunnel syndrome. J. Psychosom. Res. 126, 109820 (2019). A study showing that psychological distress, pain catastrophizing and illness perceptions have an independent role in self-reported severity of CTS, when adjusted for baseline characteristics and comorbidities.

    Article  PubMed  Google Scholar 

  76. Nunez-Cortes, R. et al. Effects of cognitive and mental health factors on the outcomes following carpal tunnel release: a systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 103, 1615–1627 (2022).

    Article  PubMed  Google Scholar 

  77. Eurostat. European occupational diseases statistics. European Commission https://ec.europa.eu/eurostat/web/experimental-statistics/european-occupational-diseases-statistics (2013).

  78. Brain, W. R., Wright, A. D. & Wilkinson, M. Spontaneous compression of both median nerves in the carpal tunnel; six cases treated surgically. Lancet 1, 277–282 (1947).

    Article  CAS  PubMed  Google Scholar 

  79. Tanzer, R. C. The carpal-tunnel syndrome; a clinical and anatomical study. J. Bone Joint Surg. Am. 41-A, 626–634 (1959).

    Article  CAS  PubMed  Google Scholar 

  80. van Rijn, R. M., Huisstede, B. M., Koes, B. W. & Burdorf, A. Associations between work-related factors and the carpal tunnel syndrome—a systematic review. Scand. J. Work. Environ. Health 35, 19–36 (2009).

    Article  PubMed  Google Scholar 

  81. Jagga, V., Lehri, A. & Verma, S. K. Occupation and its association with carpal tunnel syndrome—a review. J. Exerc. Sci. Physiother. 7, 68–78 (2011).

    Article  Google Scholar 

  82. Abichandani, S., Shaikh, S. & Nadiger, R. Carpal tunnel syndrome—an occupational hazard facing dentistry. Int. Dent. J. 63, 230–236 (2013).

    Article  PubMed  Google Scholar 

  83. Alhusain, F. A. et al. Prevalence of carpal tunnel syndrome symptoms among dentists working in Riyadh. Ann. Saudi Med. 39, 104–111 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shields, L. B. E., Iyer, V. G., Daniels, M. W., Zhang, Y. P. & Shields, C. B. Impact of occupations and hobbies on the severity of carpal tunnel syndrome: an electrodiagnostic perspective. J. Occup. Environ. Med. 65, 655–662 (2023).

    Article  PubMed  Google Scholar 

  85. Vihlborg, P. et al. Carpal tunnel syndrome and hand-arm vibration: a Swedish National Registry case-control study. J. Occup. Environ. Med. 64, 197–201 (2022).

    Article  PubMed  Google Scholar 

  86. Work-related musculoskeletal disorders and ergonomics. Centers for Disease Control and Prevention https://www.cdc.gov/workplacehealthpromotion/health-strategies/musculoskeletal-disorders/index.html (2020).

  87. Lallukka, T. et al. Sickness absence and disability pension after carpal tunnel syndrome diagnosis: a register-based study of patients and matched references in Sweden. Scand. J. Public. Health 50, 471–481 (2022).

    Article  PubMed  Google Scholar 

  88. Werner, R., Armstrong, T. J., Bir, C. & Aylard, M. K. Intracarpal canal pressures: the role of finger, hand, wrist and forearm position. Clin. Biomech. 12, 44–51 (1997).

    Article  CAS  Google Scholar 

  89. Jenkins, P. J., Watts, A. C., Duckworth, A. D. & McEachan, J. E. Socioeconomic deprivation and the epidemiology of carpal tunnel syndrome. J. Hand Surg. Eur. 37, 123–129 (2012).

    Article  CAS  Google Scholar 

  90. Mollestam, K., Englund, M. & Atroshi, I. Association of clinically relevant carpal tunnel syndrome with type of work and level of education: a general-population study. Sci. Rep. 11, 19850 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tseng, C. H. et al. Medical and non-medical correlates of carpal tunnel syndrome in a Taiwan cohort of one million. Eur. J. Neurol. 19, 91–97 (2012).

    Article  PubMed  Google Scholar 

  92. Hulkkonen, S. et al. Risk factors of hospitalization for carpal tunnel syndrome among the general working population. Scand. J. Work. Environ. Health 46, 43–49 (2020).

    Article  PubMed  Google Scholar 

  93. Lampainen, K., Hulkkonen, S., Ryhanen, J., Curti, S. & Shiri, R. Is smoking associated with carpal tunnel syndrome? A meta-analysis. Healthcare 10, 1988 (2022).

    PubMed  Google Scholar 

  94. McEntee, R. M., Tulipan, J. & Beredjiklian, P. K. Risk factors and outcomes in carpal tunnel syndrome following distal radius open reduction internal fixation. J. Hand Surg. Am. 48, 1157.e1–1157.e7 (2023).

    Article  PubMed  Google Scholar 

  95. Leow, J. M., Clement, N. D., McQueen, M. M. & Duckworth, A. D. The rate and associated risk factors for acute carpal tunnel syndrome complicating a fracture of the distal radius. Eur. J. Orthop. Surg. Traumatol. 31, 981–987 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rempel, D., Dahlin, L. & Lundborg, G. Pathophysiology of nerve compression syndromes: response of peripheral nerves to loading. J. Bone Joint Surg. Am. 81, 1600–1610 (1999). A review covering the events, based on experimental studies, occurring in a peripheral nerve during loading, such as in nerve compression disorders.

    Article  CAS  PubMed  Google Scholar 

  97. Erlanger, J. & Gasser, H. Electrical Signs of Nervous Activity (Univ. Pennsylvania Press, 1937).

  98. Dumitru, D. & Gitter, A. J. in Electrodiagnostic Medicine (ed. Dumitru, D.) Ch. 1, 16–17 (Elsevier Publishing, 2001).

  99. Berthold, C., Fraher, J., King, R. H. & Rydmark, M. in Peripheral Neuropathy (eds Dyck, P. J. & Thomas, P. K.) 35–91 (Elsevier Saunders, 2005).

  100. Dahlin, L. B. The dynamics of nerve degeneration and regeneration in a healthy milieu and in diabetes. Int. J. Mol. Sci. 24, 15241 (2023). A review of neurobiological mechanisms in nerve degeneration and regeneration, including nerve compression and more severe nerve injuries, in healthy people and people with diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dumitru, D., Zwarts, M. J. & Amato, A. A. in Electrodiagnostic Medicine (ed. Dumitru, D.) Ch. 4, 137–144 (Elsevier Publishing, 2001).

  102. Abdo, H. et al. Specialized cutaneous Schwann cells initiate pain sensation. Science 365, 695–699 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Sunderland, S. The intraneural topography of the radial, median and ulnar nerves. Brain 68, 243–299 (1945).

    Article  CAS  PubMed  Google Scholar 

  104. Festen-Schrier, V. & Amadio, P. C. The biomechanics of subsynovial connective tissue in health and its role in carpal tunnel syndrome. J. Electromyogr. Kinesiol. 38, 232–239 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Gelberman, R. H., Hergenroeder, P. T., Hargens, A. R., Lundborg, G. & Akeson, W. H. The carpal tunnel syndrome—a study of carpal canal pressure. J. Bone Joint Surg. 63, 380–383 (1981).

    Article  CAS  PubMed  Google Scholar 

  106. Okutsu, I., Ninomiya, S., Hamanaka, I., Kuroshima, N. & Inanami, H. Measurement of pressure in the carpal canal before and after endoscopic management of carpal tunnel syndrome. J. Bone Joint Surg. Am. 71, 679–683 (1989).

    Article  CAS  PubMed  Google Scholar 

  107. Phalen, G. S. & Kendrick, J. I. Compression neuropathy of the median nerve in the carpal tunnel. J. Am. Med. Assoc. 164, 524–530 (1957).

    Article  CAS  PubMed  Google Scholar 

  108. Phalen, G. S. The carpal-tunnel syndrome. Clinical evaluation of 598 hands. Clin. Orthop. 83, 29–40 (1972).

    Article  CAS  PubMed  Google Scholar 

  109. Gonzalez, N. L. & Hobson-Webb, L. D. The role of imaging for disorders of peripheral nerve. Clin. Geriatr. Med. 37, 223–239 (2021).

    Article  PubMed  Google Scholar 

  110. Luchetti, R. et al. Serial overnight recordings of intracarpal canal pressure in carpal tunnel syndrome patients with and without wrist splinting. J. Hand Surg. 19B, 35–37 (1994).

    Article  Google Scholar 

  111. Luchetti, R., Schoenhuber, R. & Nathan, P. Correlation of segmental carpal tunnel pressures with changes in hand and wrist positions in patients with carpal tunnel syndrome and controls. J. Hand Surg. Br. 23, 598–602 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Szabo, R. M., Gelberman, R. H., Williamson, R. V. & Hargens, A. R. Effects of increased systemic blood pressure on the tissue fluid pressure threshold of peripheral nerve. J. Orthop. Res. 1, 172–178 (1983).

    Article  CAS  PubMed  Google Scholar 

  113. Edwards, L., Ring, C., McIntyre, D., Winer, J. B. & Martin, U. Cutaneous sensibility and peripheral nerve function in patients with unmedicated essential hypertension. Psychophysiology 45, 141–147 (2008).

    Article  PubMed  Google Scholar 

  114. Guan, W. et al. Case-control study on individual risk factors of carpal tunnel syndrome. Exp. Ther. Med. 15, 2761–2766 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. Dahlin, L. B. & McLean, W. G. Effects of graded experimental compression on slow and fast axonal transport in rabbit vagus nerve. J. Neurol. Sci. 72, 19–30 (1986).

    Article  CAS  PubMed  Google Scholar 

  116. Dahlin, L. B., Sjostrand, J. & McLean, W. G. Graded inhibition of retrograde axonal transport by compression of rabbit vagus nerve. J. Neurol. Sci. 76, 221–230 (1986).

    Article  CAS  PubMed  Google Scholar 

  117. Dahlin, L. B., Nordborg, C. & Lundborg, G. Morphological changes in nerve cell bodies induced by experimental graded nerve compression. Exp. Neurol. 95, 611–621 (1987).

    Article  CAS  PubMed  Google Scholar 

  118. Malik, T., Malik, A. & Abd-Elsayed, A. Pathophysiology of work-related neuropathies. Biomedicines 11, 1745 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bostock, H., Sherratt, R. M. & Sears, T. A. Overcoming conduction failure in demyelinated nerve fibres by prolonging action potentials. Nature 274, 385–387 (1978).

    Article  CAS  PubMed  Google Scholar 

  120. Rydevik, B., Lundborg, G. & Bagge, U. Effects of graded compression on intraneural blood flow. An in vitro study on rabbit tibial nerve. J. Hand Surg. 6, 3–12 (1981).

    Article  CAS  Google Scholar 

  121. Schmid, A. B., Fundaun, J. & Tampin, B. Entrapment neuropathies: a contemporary approach to pathophysiology, clinical assessment, and management. Pain. Rep. 5, e829 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Howe, J. F., Loeser, J. D. & Calvin, W. H. Mechano-sensitivity of dorsal root ganglia and chronically injured axons: a physiological basis for the radicular pain of nerve root compression. Pain 3, 25–41 (1977).

    Article  PubMed  Google Scholar 

  123. Nodera, H. & Kaji, R. Nerve excitability testing and its clinical application to neuromuscular diseases. Clin. Neurophysiol. 117, 1902–1916 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Mackinnon, S. E., Dellon, A. L., Hudson, A. R. & Hunter, D. A. Chronic human nerve compression—a histological assessment. Neuropathol. Appl. Neurobiol. 12, 547–565 (1986).

    Article  CAS  PubMed  Google Scholar 

  125. Mackinnon, S. E. Pathophysiology of nerve compression. Hand Clin. 18, 231–241 (2002).

    Article  PubMed  Google Scholar 

  126. Ochoa, J. & Marotte, L. The nature of the nerve lesion caused by chronic entrapment in the guinea-pig. J. Neurol. Sci. 19, 491–495 (1973).

    Article  CAS  PubMed  Google Scholar 

  127. Castaldo, J. E. & Ochoa, J. L. Mechanical injury of peripheral nerves. Fine structure dysfunction. Clin. Plast. Surg. 11, 9–16 (1984).

    Article  CAS  PubMed  Google Scholar 

  128. Neary, D., Ochoa, J. & Gilliatt, R. W. Sub-clinical entrapment neuropathy in man. J. Neurol. Sci. 24, 283–298 (1975).

    Article  CAS  PubMed  Google Scholar 

  129. Coleman, M. P. & Freeman, M. R. Wallerian degeneration, WldS, and Nmnat. Annu. Rev. Neurosci. 33, 245–267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stoll, G. & Muller, H. W. Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol. 9, 313–325 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Waller, A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observation of the alteraton produced thereby in the structure of their primative fibres. Phil. Trans. R. Soc. Lond. 140, 423–429 (1850).

    Google Scholar 

  132. Bergsten, E., Rydberg, M., Dahlin, L. B. & Zimmerman, M. Carpal tunnel syndrome and ulnar nerve entrapment at the elbow are not associated with plasma levels of caspase-3, caspase-8 or HSP27. Front. Neurosci. 16, 809537 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Pham, K., Nassiri, N. & Gupta, R. c-Jun, krox-20, and integrin β4 expression following chronic nerve compression injury. Neurosci. Lett. 465, 194–198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mojaddidi, M. A. et al. Molecular and pathological studies in the posterior interosseous nerve of diabetic and non-diabetic patients with carpal tunnel syndrome. Diabetologia 57, 1711–1719 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Dahlin, L. B., Stenberg, L., Luthman, H. & Thomsen, N. O. Nerve compression induces activating transcription factor 3 in neurons and Schwann cells in diabetic rats. Neuroreport 19, 987–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Pettersson, L. M., Dahlin, L. B. & Danielsen, N. Changes in expression of PACAP in rat sensory neurons in response to sciatic nerve compression. Eur. J. Neurosci. 20, 1838–1848 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Dahlin, L. B., Stenberg, L. & Kanje, M. Galanin expression in sensory neurons after nerve compression or transection. Neuroreport 14, 359–362 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Tripkovic, I., Ogorevc, M., Vukovic, D., Saraga-Babic, M. & Mardesic, S. Fibrosis-associated signaling molecules are differentially expressed in palmar connective tissues of patients with carpal tunnel syndrome and Dupuytren’s disease. Biomedicines 10, 3214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hirata, H. et al. The relationship of VEGF and PGE2 expression to extracellular matrix remodelling of the tenosynovium in the carpal tunnel syndrome. J. Pathol. 204, 605–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Dahlin, L. B., Shyu, B. C., Danielsen, N. & Andersson, S. Effects of nerve compression or ischemia on conduction properties of myelinated and non-myelinated nerve fibres. An experimental study in the rabbit common peroneal nerve. Acta Physiol. Scand. 136, 97–105 (1989).

    Article  CAS  PubMed  Google Scholar 

  141. Stevens, J. C. et al. Symptoms of 100 patients with electromyographically verified carpal tunnel syndrome. Muscle Nerve 22, 1448–1456 (1999). A study of people with CTS, their reports of symptoms and distribution of hand–arm problems (based on hand symptom diagrams and questionnaires).

    Article  CAS  PubMed  Google Scholar 

  142. Cooke, R. Non-classical presentation of carpal tunnel syndrome. Occup. Med. 71, 2–3 (2021).

    Article  Google Scholar 

  143. Seror, P. Carpal tunnel syndrome in the elderly. “Beware of severe cases”. Ann. Chir. Main. Memb. Super. 10, 217–225 (1991).

    CAS  PubMed  Google Scholar 

  144. Bodofsky, E. B., Campellone, J. V., Wu, K. D. & Greenberg, W. M. Age and the severity of carpal tunnel syndrome. Electromyogr. Clin. Neurophysiol. 44, 195–199 (2004).

    CAS  PubMed  Google Scholar 

  145. Rutjes, A. W., Reitsma, J. B., Coomarasamy, A., Khan, K. S. & Bossuyt, P. M. Evaluation of diagnostic tests when there is no gold standard. A review of methods. Health Technol. Assess. https://doi.org/10.3310/hta11500 (2007).

    Article  PubMed  Google Scholar 

  146. Lalonde, D. H. “Hole-in-one” local anesthesia for wide-awake carpal tunnel surgery. Plast. Reconstr. Surg. 126, 1642–1644 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Dabbagh, A. et al. Diagnostic test accuracy of provocative maneuvers for the diagnosis of carpal tunnel syndrome: a systematic review and meta-analysis. Phys. Ther. 103, pzad029 (2023). A systematic review and meta-analysis about the accuracy of provocative manoeuvres to diagnose CTS, emphasizing that a combination of non-invasive clinical diagnostic tests is the first choice for diagnosis of CTS.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Dabbagh, A. et al. Diagnostic accuracy of sensory and motor tests for the diagnosis of carpal tunnel syndrome: a systematic review. BMC Musculoskelet. Disord. 22, 337 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Blok, R. D., Becker, S. J. & Ring, D. C. Diagnosis of carpal tunnel syndrome: interobserver reliability of the blinded scratch–collapse test. J. Hand Microsurg. 6, 5–7 (2014).

    Article  PubMed  Google Scholar 

  150. Simon, J., Lutsky, K., Maltenfort, M. & Beredjiklian, P. K. The accuracy of the scratch collapse test performed by blinded examiners on patients with suspected carpal tunnel syndrome assessed by electrodiagnostic studies. J. Hand Surg. Am. 42, 386.e381–386.e385 (2017).

    Article  Google Scholar 

  151. Graham, B., Regehr, G., Naglie, G. & Wright, J. G. Development and validation of diagnostic criteria for carpal tunnel syndrome. J. Hand Surg. Am. 31, 919–924 (2006).

    Article  PubMed  Google Scholar 

  152. Maggard, M. A. et al. Indications for performing carpal tunnel surgery: clinical quality measures. Plast. Reconstr. Surg. 126, 169–179 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Lusa, V., Karjalainen, T. V., Paakkonen, M., Rajamaki, T. J. & Jaatinen, K. Surgical versus non-surgical treatment for carpal tunnel syndrome. Cochrane Database Syst. Rev. 1, CD001552 (2024).

    PubMed  Google Scholar 

  154. Whittaker, R. G. SNAPs, CMAPs and F-waves: nerve conduction studies for the uninitiated. Pract. Neurol. 12, 108–115 (2012).

    Article  PubMed  Google Scholar 

  155. Hilburn, J. W. General principles and use of electrodiagnostic studies in carpal and cubital tunnel syndromes. With special attention to pitfalls and interpretation. Hand Clin. 12, 205–221 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Thomsen, N. O., Rosen, I. & Dahlin, L. B. Neurophysiologic recovery after carpal tunnel release in diabetic patients. Clin. Neurophysiol. 121, 1569–1573 (2010).

    Article  PubMed  Google Scholar 

  157. Thomsen, N. O. B., Andersson, G. S., Bjork, J. & Dahlin, L. B. Neurophysiological recovery 5 years after carpal tunnel release in patients with diabetes. Muscle Nerve 56, E59–E64 (2017).

    Article  PubMed  Google Scholar 

  158. Werner, R. A. & Andary, M. Electrodiagnostic evaluation of carpal tunnel syndrome. Muscle Nerve 44, 597–607 (2011).

    Article  PubMed  Google Scholar 

  159. Stevens, J. C. AAEM minimonograph #26: the electrodiagnosis of carpal tunnel syndrome. Muscle Nerve 20, 1477–1486 (1997).

    Article  CAS  PubMed  Google Scholar 

  160. American Association of Electrodiagnostic Medicine, American Academy of Neurology, and American Academy of Physical Medicine and Rehabilitation Practice parameter for electrodiagnostic studies in carpal tunnel syndrome: summary statement. Muscle Nerve 25, 918–922 (2002).

    Article  Google Scholar 

  161. Bland, J. D. P. Use of nerve conduction studies in carpal tunnel syndrome. J. Hand Surg. Eur. 48, 976–985 (2023). A review with information about how nerve conduction studies are used to diagnose CTS and measure nerve function with detection and quantification of indicators of nerve injury like local demyelination and axonal loss in relation to symptoms.

    Article  Google Scholar 

  162. Bland, J. D. A neurophysiological grading scale for carpal tunnel syndrome. Muscle Nerve 23, 1280–1283 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Chen, J. & Fowler, J. R. Comparison of diagnostic accuracy of electrodiagnostic testing and ultrasonography for carpal tunnel syndrome. Hand 18, 407–412 (2023).

    Article  PubMed  Google Scholar 

  164. Wang, W. L., Buterbaugh, K., Kadow, T. R., Goitz, R. J. & Fowler, J. R. A prospective comparison of diagnostic tools for the diagnosis of carpal tunnel syndrome. J. Hand Surg. Am. 43, 833–836.e2 (2018).

    Article  PubMed  Google Scholar 

  165. Jordan, R., Carter, T. & Cummins, C. A systematic review of the utility of electrodiagnostic testing in carpal tunnel syndrome. Br. J. Gen. Pract. 52, 670–673 (2002).

    PubMed  PubMed Central  Google Scholar 

  166. Osiak, K. et al. Electrodiagnostic studies in the surgical treatment of carpal tunnel syndrome—a systematic review. J. Clin. Med. 10, 10.3390/jcm10122691 (2021).

  167. Rivlin, M., Kachooei, A. R., Wang, M. L. & Ilyas, A. M. Electrodiagnostic grade and carpal tunnel release outcomes: a prospective analysis. J. Hand Surg. Am. 43, 425–431 (2018).

    Article  PubMed  Google Scholar 

  168. Wang, W. L., Hanson, T. & Fowler, J. R. A comparison of 6 diagnostic tests for carpal tunnel syndrome using latent class analysis. Hand 15, 776–779 (2020).

    Article  PubMed  Google Scholar 

  169. Billakota, S. & Hobson-Webb, L. D. Standard median nerve ultrasound in carpal tunnel syndrome: a retrospective review of 1,021 cases. Clin. Neurophysiol. Pract. 2, 188–191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Cartwright, M. S. et al. Evidence-based guideline: neuromuscular ultrasound for the diagnosis of carpal tunnel syndrome. Muscle Nerve 46, 287–293 (2012).

    Article  PubMed  Google Scholar 

  171. Lin, T. Y., Chang, K. V., Wu, W. T. & Ozcakar, L. Ultrasonography for the diagnosis of carpal tunnel syndrome: an umbrella review. J. Neurol. 269, 4663–4675 (2022).

    Article  PubMed  Google Scholar 

  172. Pelosi, L. et al. Expert consensus on the combined investigation of carpal tunnel syndrome with electrodiagnostic tests and neuromuscular ultrasound. Clin. Neurophysiol. 135, 107–116 (2022). A guide to clinicians about how the combination of electrodiagnostic tests and neuromuscular ultrasound is used to diagnose a suspected CTS.

    Article  PubMed  Google Scholar 

  173. Armstrong, T. J., Castelli, W. A., Evans, F. G. & Diaz-Perez, R. Some histological changes in carpal tunnel contents and their biomechanical implications. J. Occup. Med. 26, 197–201 (1984).

    CAS  PubMed  Google Scholar 

  174. Paolantonio, G. et al. Fibrolipomatous hamartoma of the median nerve in a child with carpal tunnel syndrome: imaging findings and literature review. J. Ultrasound 26, 913–918 (2023).

    Article  PubMed  Google Scholar 

  175. Mulroy, E. & Pelosi, L. Carpal tunnel syndrome in advanced age: a sonographic and electrodiagnostic study. Muscle Nerve 60, 236–241 (2019).

    Article  PubMed  Google Scholar 

  176. Gronfors, H., Himanen, S. L., Martikkala, L., Kallio, M. & Makela, K. Median nerve ultrasound cross sectional area and wrist-to-forearm ratio in relation to carpal tunnel syndrome related axonal damage and patient age. Clin. Neurophysiol. Pract. 8, 81–87 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Roomizadeh, P. et al. Ultrasonographic assessment of carpal tunnel syndrome severity: a systematic review and meta-analysis. Am. J. Phys. Med. Rehabil. 98, 373–381 (2019).

    Article  PubMed  Google Scholar 

  178. Fargaly, S. N. & Bland, J. D. P. Do nerve conduction studies or ultrasound imaging correlate more closely with subjective symptom severity in carpal tunnel syndrome? Muscle Nerve 68, 264–268 (2023).

    Article  PubMed  Google Scholar 

  179. Kaymak, B. et al. A comparison of the benefits of sonography and electrophysiologic measurements as predictors of symptom severity and functional status in patients with carpal tunnel syndrome. Arch. Phys. Med. Rehabil. 89, 743–748 (2008).

    Article  PubMed  Google Scholar 

  180. Roll, S. C., Case-Smith, J. & Evans, K. D. Diagnostic accuracy of ultrasonography vs. electromyography in carpal tunnel syndrome: a systematic review of literature. Ultrasound Med. Biol. 37, 1539–1553 (2011).

    Article  PubMed  Google Scholar 

  181. Drakopoulos, D., Mitsiokapa, E., Karamanis, E., Kontogeorgakos, V. & Mavrogenis, A. F. Ultrasonography provides a diagnosis similar to that of nerve conduction studies for carpal tunnel syndrome. Orthopedics 42, e460–e464 (2019).

    Article  PubMed  Google Scholar 

  182. Lee, K. M. & Kim, H. J. Relationship between electrodiagnosis and various ultrasonographic findings for diagnosis of carpal tunnel syndrome. Ann. Rehabil. Med. 40, 1040–1047 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Fowler, J. R., Munsch, M., Tosti, R., Hagberg, W. C. & Imbriglia, J. E. Comparison of ultrasound and electrodiagnostic testing for diagnosis of carpal tunnel syndrome: study using a validated clinical tool as the reference standard. J. Bone Joint Surg. Am. 96, e148 (2014).

    Article  PubMed  Google Scholar 

  184. Mhoon, J. T., Juel, V. C. & Hobson-Webb, L. D. Median nerve ultrasound as a screening tool in carpal tunnel syndrome: correlation of cross-sectional area measures with electrodiagnostic abnormality. Muscle Nerve 46, 871–878 (2012).

    Article  PubMed  Google Scholar 

  185. Mondelli, M., Filippou, G., Gallo, A. & Frediani, B. Diagnostic utility of ultrasonography versus nerve conduction studies in mild carpal tunnel syndrome. Arthritis Rheum. 59, 357–366 (2008).

    Article  PubMed  Google Scholar 

  186. Zaki, H. A. et al. A comparative analysis between ultrasound and electromyographic and nerve conduction studies in diagnosing carpal tunnel syndrome (CTS): a systematic review and meta-analysis. Cureus 14, e30476 (2022).

    PubMed  PubMed Central  Google Scholar 

  187. Carrozzi, S. et al. Patients prefer ultrasound to nerve conduction studies for the diagnosis of carpal tunnel syndrome. Plast. Reconstr. Surg. Glob. Open 11, e5279 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Nagappa, M., Visser, L. H. & Bathala, L. Peripheral nerve sonography, a novel technique for improving the diagnosis of Hansen’s neuropathy. Lepr. Rev. 92, 202–206 (2021).

    Article  Google Scholar 

  189. Ng, A. W. H. et al. MRI criteria for diagnosis and predicting severity of carpal tunnel syndrome. Skelet. Radiol. 49, 397–405 (2020).

    Article  Google Scholar 

  190. Ng, A. W. H., Griffith, J. F. & Ng, I. S. H. MRI of carpal tunnel syndrome: before and after carpal tunnel release. Clin. Radiol. 76, 940.e929–940.e935 (2021).

    Article  Google Scholar 

  191. Sernik, R. A. et al. Shear wave elastography is a valuable tool for diagnosing and grading carpal tunnel syndrome. Skelet. Radiol. 52, 67–72 (2023).

    Article  Google Scholar 

  192. Nam, K., Peterson, S. M., Wessner, C. E., Machado, P. & Forsberg, F. Diagnosis of carpal tunnel syndrome using shear wave elastography and high-frequency ultrasound imaging. Acad. Radiol. 28, e278–e287 (2021).

    Article  PubMed  Google Scholar 

  193. Wee, T. C. & Simon, N. G. Shearwave elastography in the differentiation of carpal tunnel syndrome severity. PM & R 12, 1134–1139 (2020).

    Article  Google Scholar 

  194. Park, E. J. et al. Comparison of the diagnostic performance of strain elastography and shear wave elastography for the diagnosis of carpal tunnel syndrome. J. Ultrasound Med. 40, 1011–1021 (2021).

    Article  PubMed  Google Scholar 

  195. Knight, A. E., Lipman, S. L., Ketsiri, T., Hobson-Webb, L. D. & Nightingale, K. R. On the challenges associated with obtaining reproducible measurements using SWEI in the median nerve. Ultrasound Med. Biol. 46, 1092–1104 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Wang, J. C. et al. Application of deep learning algorithms in automatic sonographic localization and segmentation of the median nerve: a systematic review and meta-analysis. Artif. Intell. Med. 137, 102496 (2023).

    Article  PubMed  Google Scholar 

  197. Mohammadi, A. et al. Deep radiomics features of median nerves for automated diagnosis of carpal tunnel syndrome with ultrasound images: a multi-center study. J. Ultrasound Med. 42, 2257–2268 (2023).

    Article  PubMed  Google Scholar 

  198. Pham, M. et al. Anterior interosseous nerve syndrome: fascicular motor lesions of median nerve trunk. Neurology 82, 598–606 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Evanoff, B. & Kymes, S. Modeling the cost–benefit of nerve conduction studies in pre-employment screening for carpal tunnel syndrome. Scand. J. Work. Environ. Health 36, 299–304 (2010).

    Article  PubMed  Google Scholar 

  200. Dale, A. M. et al. The effectiveness of post-offer pre-placement nerve conduction screening for carpal tunnel syndrome. J. Occup. Environ. Med. 56, 840–847 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Armstrong, T., Dale, A. M., Franzblau, A. & Evanoff, B. A. Risk factors for carpal tunnel syndrome and median neuropathy in a working population. J. Occup. Environ. Med. 50, 1355–1364 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Formiga, F., Baeza, L. S., Chivite, D. & Yun, S. Musculoskeletal co-morbidities in patients with transthyretin amyloid cardiomyopathy: a systematic review. Esc. Heart Fail. 11, 662–671 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Patel, P., Antoniou, G., Clark, D., Ketteridge, D. & Williams, N. Screening for carpal tunnel syndrome in patients with mucopolysaccharidosis. J. Child. Neurol. 35, 410–417 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Holt, J. B., Van Heest, A. E. & Shah, A. S. Hand disorders in children with mucopolysaccharide storage diseases. J. Hand Surg. Am. 38, 2263–2266 (2013).

    Article  PubMed  Google Scholar 

  205. Jansen, M. C. et al. Management of recurrent carpal tunnel syndrome: systematic review and meta-analysis. J. Hand Surg. Am. 47, 388.e381–388.e319 (2022).

    Article  Google Scholar 

  206. Buller, M., Schultz, S., Kasdan, M. & Wilhelmi, B. J. The incidence of complex regional pain syndrome in simultaneous surgical treatment of carpal tunnel syndrome and Dupuytren contracture. Hand 13, 391–394 (2018).

    Article  PubMed  Google Scholar 

  207. Nyman, E., Dahlin, E., Gudinge, H. & Dahlin, L. B. Surgically treated neuroma in upper extremity: patient characteristics and factors influencing outcome of surgery. Plast. Reconstr. Surg. Glob. Open 10, e4076 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Dahlin, E., Gudinge, H., Dahlin, L. B. & Nyman, E. Neuromas cause severe residual problems at long-term despite surgery. Sci. Rep. 13, 15693 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Karjalainen, T. V. et al. Splinting for carpal tunnel syndrome. Cochrane Database Syst. Rev. 2, CD010003 (2023). A thorough systematic Cochrane review about the scientific basis of the efficacy of splinting for CTS.

    PubMed  Google Scholar 

  210. Management of Carpal Tunnel Syndrome Evidence-Based Clinical Practice Guideline (American Academy of Orthopaedic Surgeons, 2016).

  211. Ballestero-Perez, R. et al. Effectiveness of nerve gliding exercises on carpal tunnel syndrome: a systematic review. J. Manipul. Physiol. Ther. 40, 50–59 (2017).

    Article  Google Scholar 

  212. Keir, P. J. & Rempel, D. M. Pathomechanics of peripheral nerve loading. Evidence in carpal tunnel syndrome. J. Hand Ther. 18, 259–269 (2005).

    Article  PubMed  Google Scholar 

  213. Palmer, K. T., Harris, E. C. & Coggon, D. Carpal tunnel syndrome and its relation to occupation: a systematic literature review. Occup. Med. 57, 57–66 (2007).

    Article  Google Scholar 

  214. Worker Health Chartbook 2004. Report No. 2004–146 (Centers for Disease Control and Prevention & National Institute for Occupational Safety and Health, 2004).

  215. Choi, G. H. et al. Acupuncture and related interventions for the treatment of symptoms associated with carpal tunnel syndrome. Cochrane Database Syst. Rev. 12, CD011215 (2018).

    PubMed  Google Scholar 

  216. Ashworth, N. L. et al. Local corticosteroid injection versus placebo for carpal tunnel syndrome. Cochrane Database Syst. Rev. 2, CD015148 (2023).

    PubMed  Google Scholar 

  217. Hofer, M., Ranstam, J. & Atroshi, I. Extended follow-up of local steroid injection for carpal tunnel syndrome: a randomized clinical trial. JAMA Netw. Open. 4, e2130753 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Huisstede, B. M. et al. Effectiveness of oral pain medication and corticosteroid injections for carpal tunnel syndrome: a systematic review. Arch. Phys. Med. Rehabil. 99, 1609–1622.e1610 (2018).

    Article  PubMed  Google Scholar 

  219. Cage, E. S., Beyer, J. J. & Ebraheim, N. A. Injections for treatment of carpal tunnel syndrome: a narrative review of the literature. J. Orthop. 37, 81–85 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Malahias, M. A. et al. Platelet-rich plasma ultrasound-guided injection in the treatment of carpal tunnel syndrome: a placebo-controlled clinical study. J. Tissue Eng. Regen. Med. 12, e1480–e1488 (2018).

    Article  CAS  PubMed  Google Scholar 

  221. Mathieu, T., Lemmens, E. & Stassijns, G. A safe and easy-to-use ultrasound-guided hydrodissection technique for the carpal tunnel syndrome: a minimally invasive approach. J. Ultrasound 25, 451–455 (2022).

    Article  PubMed  Google Scholar 

  222. Li, W. et al. Extracorporeal shock wave therapy versus local corticosteroid injection for the treatment of carpal tunnel syndrome: a meta-analysis. J. Orthop. Surg. Res. 15, 556 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  223. American Academy of Orthopaedic Surgeons. AAOS clinical practice guideline on carpal tunnel syndrome. OrthoGuidelines https://www.orthoguidelines.org/go/auc/default.cfm?auc_id=224989&actionxm=Terms (2016).

  224. Scholten, R. J., Mink van der Molen, A., Uitdehaag, B. M., Bouter, L. M. & de Vet, H. C. Surgical treatment options for carpal tunnel syndrome. Cochrane Database Syst. Rev. 2007, CD003905 (2007).

    PubMed  PubMed Central  Google Scholar 

  225. Peperkamp, K., Natroshvili, T., Malyar, M. A., Heine, E. P. & Walbeehm, E. T. Anatomic variations and malformations as rare causes of median nerve compression in adults: a narrative review. Ann. Plast. Surg. 88, 237–243 (2022).

    Article  CAS  PubMed  Google Scholar 

  226. Crnkovic, T. et al. The effect of epineurotomy on the median nerve volume after the carpal tunnel release: a prospective randomised double-blind controlled trial. Int. Orthop. 36, 1885–1892 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Elliot, D. Surgical management of painful peripheral nerves. Clin. Plast. Surg. 41, 589–613 (2014).

    Article  PubMed  Google Scholar 

  228. Elliot, D. & Sierakowski, A. The surgical management of painful nerves of the upper limb: a unit perspective. J. Hand Surg. Eur. 36, 760–770 (2011).

    Article  CAS  Google Scholar 

  229. Padua, R. et al. Intrasurgical use of steroids on carpal tunnel syndrome: a randomize, prospective, double-blind controlled study. J. Orthop. Traumatol. 4, 76–80 (2003).

    Google Scholar 

  230. Thomsen, N. O., Cederlund, R., Rosen, I., Bjork, J. & Dahlin, L. B. Clinical outcomes of surgical release among diabetic patients with carpal tunnel syndrome: prospective follow-up with matched controls. J. Hand Surg. Am. 34, 1177–1187 (2009). A prospective clinical study of CTS treated in age- and sex-matched people with and without diabetes with a 52-month follow-up, showing that people with CTS and diabetes benefit from surgery.

    Article  PubMed  Google Scholar 

  231. Chen, L. et al. Effectiveness and safety of endoscopic versus open carpal tunnel decompression. Arch. Orthop. Trauma. Surg. 134, 585–593 (2014).

    Article  PubMed  Google Scholar 

  232. Orhurhu, V. et al. Carpal tunnel release surgery—a systematic review of open and endoscopic approaches. Anesth. Pain. Med. 10, e112291 (2020). A systematic review of CTS comparing the outcome of endoscopic and open carpal tunnel release.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Rojo-Manaute, J. M. et al. Ultra-minimally invasive ultrasound-guided carpal tunnel release: a randomized clinical trial. J. Ultrasound Med. 35, 1149–1157 (2016).

    Article  PubMed  Google Scholar 

  234. Ence, A. K. & DeGeorge, B. R. Jr. Management of failed carpal and cubital tunnel release: an evidence-based guide to success. J. Hand Surg. Glob. Online 5, 510–518 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Langdell, H. C., Zeng, S. L., Pidgeon, T. S. & Mithani, S. K. Recalcitrant neuropathies in the upper extremity. J. Hand Surg. Glob. Online 5, 503–509 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Neuhaus, V., Christoforou, D., Cheriyan, T. & Mudgal, C. S. Evaluation and treatment of failed carpal tunnel release. Orthop. Clin. North. Am. 43, 439–447 (2012).

    Article  PubMed  Google Scholar 

  237. Soltani, A. M., Allan, B. J., Best, M. J., Mir, H. S. & Panthaki, Z. J. A systematic review of the literature on the outcomes of treatment for recurrent and persistent carpal tunnel syndrome. Plast. Reconstr. Surg. 132, 114–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  238. Pomerance, J., Zurakowski, D. & Fine, I. The cost-effectiveness of nonsurgical versus surgical treatment for carpal tunnel syndrome. J. Hand Surg. Am. 34, 1193–1200 (2009). A retrospective study of the cost-effectiveness of non-surgical and surgical treatment, indicating that surgery is indicated in electrophysiologically confirmed CTS.

    Article  PubMed  Google Scholar 

  239. Chung, K. C., Walters, M. R., Greenfield, M. L. & Chernew, M. E. Endoscopic versus open carpal tunnel release: a cost-effectiveness analysis. Plast. Reconstr. Surg. 102, 1089–1099 (1998).

    Article  CAS  PubMed  Google Scholar 

  240. Patel, A. et al. The negative effect of carpal tunnel syndrome on sleep quality. Sleep. Disord. 2014, 962746 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Patel, J. N., McCabe, S. J. & Myers, J. Characteristics of sleep disturbance in patients with carpal tunnel syndrome. Hand 7, 55–58 (2012).

    Article  PubMed  Google Scholar 

  242. Atroshi, I., Gummesson, C., Johnsson, R. & Sprinchorn, A. Symptoms, disability, and quality of life in patients with carpal tunnel syndrome. J. Hand Surg. Am. 24, 398–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  243. Trouw, A. G. et al. Improvement in sleep quality after carpal tunnel release. J. Long. Term. Eff. Med. Implant. 28, 55–61 (2018).

    Article  Google Scholar 

  244. Tulipan, J. E. et al. Prospective evaluation of sleep improvement following carpal tunnel release surgery. J. Hand Surg. Am. 42, 390.e391–390.e396 (2017).

    Article  Google Scholar 

  245. Marti, C., Hensler, S., Herren, D. B., Niedermann, K. & Marks, M. Measurement properties of the EuroQoL EQ-5D-5L to assess quality of life in patients undergoing carpal tunnel release. J. Hand Surg. Eur. 41, 957–962 (2016).

    Article  CAS  Google Scholar 

  246. Postma, J. D. & Kemler, M. A. The effect of carpal tunnel release on health-related quality of life of 2346 patients over a 5-year period. J. Hand Surg. Eur. 47, 347–352 (2022). A prospective study analysing health-related quality of life (QoL) from a societal perspective of CTS, indicating that CTS has a comparable impact on QoL compared to other diseases and that surgery can substantially improve QoL at a modest cost.

    Article  Google Scholar 

  247. Li, Y. et al. Open versus endoscopic carpal tunnel release: a systematic review and meta-analysis of randomized controlled trials. BMC Musculoskelet. Disord. 21, 272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Chan, P. Y. W. et al. Long-term efficacy of corticosteroid injection for carpal tunnel syndrome: a systematic review. Hand https://doi.org/10.1177/1558944723122232 (2024).

  249. Levine, D. W. et al. A self-administered questionnaire for the assessment of severity of symptoms and functional status in carpal tunnel syndrome. J. Bone Joint Surg. 75, 1585–1592 (1993). The first publication of the self-administered questionnaire for assessment of symptom severity and function in CTS, used extensively before and after surgery in numerous published articles.

    Article  CAS  PubMed  Google Scholar 

  250. Leite, J. C., Jerosch-Herold, C. & Song, F. A systematic review of the psychometric properties of the Boston Carpal Tunnel Questionnaire. BMC Musculoskelet. Disord. 7, 78 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Chung, K. C., Hamill, J. B., Walters, M. R. & Hayward, R. A. The Michigan Hand Outcomes Questionnaire (MHQ): assessment of responsiveness to clinical change. Ann. Plast. Surg. 42, 619–622 (1999).

    Article  CAS  PubMed  Google Scholar 

  252. Zimmerman, M., Hall, E., Carlsson, K. S., Nyman, E. & Dahlin, L. B. Socioeconomic factors predicting outcome in surgically treated carpal tunnel syndrome: a national registry-based study. Sci. Rep. 11, 2581 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Zimmerman, M. et al. Open carpal tunnel release and diabetes: a retrospective study using PROMs and national quality registries. BMJ Open. 9, e030179 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Zimmerman, M. et al. Ulnar nerve entrapment in diabetes: patient-reported outcome after surgery in national quality registries. Plast. Reconstr. Surg. Glob. Open. 8, e2740 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Linde, F., Rydberg, M. & Zimmerman, M. Surgically treated carpal tunnel syndrome and ulnar nerve entrapment at the elbow in different occupations and their effect on surgical outcome. J. Occup. Environ. Med. 64, e369–e373 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Miller, L. E., Hammert, W. C. & Chung, K. C. Best-evidence systematic review and meta-analysis of endoscopic carpal tunnel release outcomes. J. Hand Surg. Glob. Online 5, 768–773 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Fowler, J. R., Chung, K. C. & Miller, L. E. Multicenter pragmatic study of carpal tunnel release with ultrasound guidance. Expert. Rev. Med. Devices 19, 273–280 (2022).

    Article  CAS  PubMed  Google Scholar 

  258. Eberlin, K. R. et al. Multicenter randomized trial of carpal tunnel release with ultrasound guidance versus mini-open technique. Expert. Rev. Med. Devices 20, 597–605 (2023).

    Article  CAS  PubMed  Google Scholar 

  259. Cagle, P. J. Jr., Reams, M., Agel, J. & Bohn, D. An outcomes protocol for carpal tunnel release: a comparison of outcomes in patients with and without medical comorbidities. J. Hand Surg. Am. 39, 2175–2180 (2014).

    Article  PubMed  Google Scholar 

  260. Ettema, A. M. et al. Surgery versus conservative therapy in carpal tunnel syndrome in people aged 70 years and older. Plast. Reconstr. Surg. 118, 947–958 (2006).

    Article  CAS  PubMed  Google Scholar 

  261. Thomsen, N. O. et al. Carpal tunnel release in patients with diabetes: a 5-year follow-up with matched controls. J. Hand Surg. Am. 39, 713–720 (2014).

    Article  PubMed  Google Scholar 

  262. Gerritsen, A. A. et al. Conservative treatment options for carpal tunnel syndrome: a systematic review of randomised controlled trials. J. Neurol. 249, 272–280 (2002).

    Article  PubMed  Google Scholar 

  263. Gerritsen, A. A. et al. Splinting vs surgery in the treatment of carpal tunnel syndrome: a randomized controlled trial. JAMA 288, 1245–1251 (2002).

    Article  PubMed  Google Scholar 

  264. Jarvik, J. G. et al. Surgery versus non-surgical therapy for carpal tunnel syndrome: a randomised parallel-group trial. Lancet 374, 1074–1081 (2009).

    Article  PubMed  Google Scholar 

  265. Verdugo, R. J., Salinas, R. A., Castillo, J. L. & Cea, J. G. Surgical versus non-surgical treatment for carpal tunnel syndrome. Cochrane Database Syst. Rev. 2008, CD001552 (2008).

    PubMed  PubMed Central  Google Scholar 

  266. Billig, J. I. et al. Predictors and variation in steroid injection use for carpal tunnel syndrome from a multicenter quality collaborative. Plast. Reconstr. Surg. 153, 1075–1082 (2024).

    Article  CAS  PubMed  Google Scholar 

  267. Piazzini, D. B. et al. A systematic review of conservative treatment of carpal tunnel syndrome. Clin. Rehabil. 21, 299–314 (2007).

    Article  CAS  PubMed  Google Scholar 

  268. Fujihara, Y., Shauver, M. J., Lark, M. E., Zhong, L. & Chung, K. C. The effect of workers’ compensation on outcome measurement methods after upper extremity surgery: a systematic review and meta-analysis. Plast. Reconstr. Surg. 139, 923–933 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Harris, I., Mulford, J., Solomon, M., van Gelder, J. M. & Young, J. Association between compensation status and outcome after surgery: a meta-analysis. JAMA 293, 1644–1652 (2005).

    Article  CAS  PubMed  Google Scholar 

  270. Falkiner, S. & Myers, S. When exactly can carpal tunnel syndrome be considered work-related? Anz. J. Surg. 72, 204–209 (2002).

    Article  PubMed  Google Scholar 

  271. Simpson, M. A. & Day, B. Painful numb hands. Med. J. Aust. 195, 388–391 (2011).

    Article  PubMed  Google Scholar 

  272. Menorca, R. M. G. et al. Nerve physiology: mechanisms of injury and recovery. Hand Clin. 29, 317–330 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Peng, P. W. H. & Jankovic, D. in Regional Nerve Blocks in Anesthesia and Pain Therapy (eds Jankovic, D. & Peng, P.) 441–444 (Springer, 2015).

  274. Seiler, J. G. in Surgical Anatomy and Technique (ed. Skandalakis, L. J.) 735–745 (Springer, 2021).

  275. Dahlin, L. B. et al. Three-dimensional architecture of human diabetic peripheral nerves revealed by X-ray phase contrast holographic nanotomography. Sci. Rep. 10, 7592 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank R. Ahdoot from the University of Michigan for his research on this topic and his editing of this manuscript. They thank T. Folker for excellent administrative help.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (L.B.D.); Epidemiology (M.Z.); Mechanisms/pathophysiology (L.B.D. and N.v.A.); Diagnosis, screening and prevention (M.C., C.A.H. and N.v.A.); Management (M.C. and C.A.H.); Quality of life (K.C.C.); Outlook (L.B.D. and K.C.C.); overview of the Primer (L.B.D.).

Corresponding author

Correspondence to Lars B. Dahlin.

Ethics declarations

Competing interests

L.B.D. received royalties for book chapters from Studentlitteratur, Sweden, and funding for related research areas, directed to Lund University, from the Swedish Research Council (grant 2021-01942), Skåne University Hospital and the Swedish Diabetes Foundation (grant DIA2020-492). M.Z. received payment for lectures from Ansell Medical, France. M.C. has consultant contracts with Medartis, BioSILK and Swemac; lecturing contracts with Medartis, Swemac and MedCo; and shares in DyCare, but no competing interests for the present publication. N.v.A. is an ultrasound instructor for Sonoskill, The Netherlands and performs editorial duties for Wiley Publishing; all payments go to the employer. K.C.C. has received book royalties from Elsevier and Lippincott Williams & Wilkins and grant funding from Sonex, USA. C.A.H. declares no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks Francis Walker, Stefano Mattioli, Thomas J. Armstrong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahlin, L.B., Zimmerman, M., Calcagni, M. et al. Carpal tunnel syndrome. Nat Rev Dis Primers 10, 37 (2024). https://doi.org/10.1038/s41572-024-00521-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00521-1

  • Springer Nature Limited

Navigation