Log in

Discrete nonlinear topological photonics

  • Perspective
  • Published:

From Nature Physics

View current issue Submit your manuscript

Abstract

Topological materials, whether in solid state, photonic or acoustic systems, or other domains, are characterized by bulk topological invariants that remain unchanged as long as the relevant spectral gaps remain open. Through the bulk–edge correspondence principle, these invariants predict the presence of robust states that are localized at the termination of the material. A key example is a Chern insulator, which supports backscatter-free edge states that lead to sharply quantized conductance in the electronic case, and allows for robustness against fabrication imperfections in photonic devices. There has been a great deal of research into the linear properties of topological photonic structures, but it has been only recently that interest in the nonlinear domain has bloomed. Nonlinearity has been of particular interest because it is only in nonlinear and interacting systems that the true bosonic character of photons emerges, giving rise to physics with no direct correspondence in solid-state materials. In this Perspective, we discuss recent results concerning nonlinearity in topological photonics—with an emphasis on laser-written waveguide arrays as a model discrete system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Schematic of the driving protocol for a unit cell of an anomalous Floquet topological insulator lattice.
Fig. 2: Experimentally observed wavefunction profiles of solitons in an anomalous Floquet topological insulator.
Fig. 3: Operation of a nonlinearity-induced topological insulator.
Fig. 4: Nonlinear Thouless pum**.

Similar content being viewed by others

References

  1. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    ADS  Google Scholar 

  2. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    ADS  Google Scholar 

  3. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Google Scholar 

  4. Qi, X.-L. & Zhang, S.-C. The quantum spin Hall effect and topological insulators. Phys. Today 63, 33–38 (2010).

    Google Scholar 

  5. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    ADS  Google Scholar 

  6. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS  Google Scholar 

  7. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  Google Scholar 

  8. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    ADS  Google Scholar 

  9. Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016).

    ADS  Google Scholar 

  10. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795–800 (2013).

    Google Scholar 

  11. Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

    ADS  Google Scholar 

  12. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    ADS  Google Scholar 

  13. Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 14495–14500 (2015).

    ADS  Google Scholar 

  14. Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    ADS  Google Scholar 

  15. Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).

    Google Scholar 

  16. Roushan, P. et al. Observation of topological transitions in interacting quantum circuits. Nature 515, 241–244 (2014).

    ADS  Google Scholar 

  17. Karzig, T., Bardyn, C.-E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015).

    Google Scholar 

  18. Nalitov, A. V., Solnyshkov, D. D. & Malpuech, G. Polariton \(\mathbb{Z}\) topological insulator. Phys. Rev. Lett. 114, 116401 (2015).

    ADS  MathSciNet  Google Scholar 

  19. Klembt, S. et al. Exciton–polariton topological insulator. Nature 562, 552–556 (2018).

    ADS  Google Scholar 

  20. Maczewsky, L. J., Zeuner, J. M., Nolte, S. & Szameit, A. Observation of photonic anomalous Floquet topological insulators. Nat. Commun. 8, 13756 (2017).

    ADS  Google Scholar 

  21. Mukherjee, S. et al. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice. Nat. Commun. 8, 13918 (2017).

    ADS  Google Scholar 

  22. Malkova, N., Hromada, I., Wang, X., Bryant, G. & Chen, Z. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett. 34, 1633–1635 (2009).

    ADS  Google Scholar 

  23. Noh, J. et al. Topological protection of photonic mid-gap defect modes. Nat. Photon. 12, 408 (2018).

    ADS  Google Scholar 

  24. Zilberberg, O. et al. Photonic topological boundary pum** as a probe of 4D quantum Hall physics. Nature 553, 59–62 (2018).

    ADS  Google Scholar 

  25. Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    ADS  MathSciNet  Google Scholar 

  26. Noh, J. et al. Experimental observation of optical Weyl points and Fermi arc-like surface states. Nat. Phys. 13, 611–617 (2017).

    Google Scholar 

  27. Vaidya, S. et al. Observation of a charge-2 photonic Weyl point in the infrared. Phys. Rev. Lett. 125, 253902 (2020).

    ADS  Google Scholar 

  28. Noh, J., Huang, S., Chen, K. P. & Rechtsman, M. C. Observation of photonic topological valley Hall edge states. Phys. Rev. Lett. 120, 063902 (2018).

    ADS  Google Scholar 

  29. Stützer, S. et al. Photonic topological Anderson insulators. Nature 560, 461–465 (2018).

    ADS  Google Scholar 

  30. Yuan, L., Shi, Y. & Fan, S. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741–744 (2016).

    ADS  Google Scholar 

  31. Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).

    ADS  Google Scholar 

  32. Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    ADS  Google Scholar 

  33. Weimann, S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).

    ADS  Google Scholar 

  34. Rechtsman, M. C. et al. Topological protection of photonic path entanglement. Optica 3, 925–930 (2016).

    ADS  Google Scholar 

  35. Mittal, S., Orre, V. V. & Hafezi, M. Topologically robust transport of entangled photons in a 2D photonic system. Opt. Express 24, 15631–15641 (2016).

    ADS  Google Scholar 

  36. Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).

    ADS  Google Scholar 

  37. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Google Scholar 

  38. Guglielmon, J. & Rechtsman, M. C. Broadband topological slow light through higher momentum-space winding. Phys. Rev. Lett. 122, 153904 (2019).

    ADS  Google Scholar 

  39. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    ADS  Google Scholar 

  40. He, L. et al. Floquet Chern insulators of light. Nat. Commun. 10, 4194 (2019).

    ADS  Google Scholar 

  41. **, J. et al. Observation of Floquet Chern insulators of light. Preprint at https://arxiv.org/abs/2304.09385 (2023).

  42. Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    ADS  Google Scholar 

  43. Lumer, Y., Plotnik, Y., Rechtsman, M. C. & Segev, M. Self-localized states in photonic topological insulators. Phys. Rev. Lett. 111, 243905 (2013).

    ADS  Google Scholar 

  44. Ablowitz, M. J., Curtis, C. W. & Ma, Y.-P. Linear and nonlinear traveling edge waves in optical honeycomb lattices. Phys. Rev. A 90, 023813 (2014).

    ADS  Google Scholar 

  45. Leykam, D. & Chong, Y. D. Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett. 117, 143901 (2016).

    ADS  Google Scholar 

  46. Kartashov, Y. V. & Skryabin, D. V. Modulational instability and solitary waves in polariton topological insulators. Optica 3, 1228–1236 (2016).

    ADS  Google Scholar 

  47. Marzuola, J. L., Rechtsman, M., Osting, B. & Bandres, M. Bulk soliton dynamics in bosonic topological insulators. Preprint at https://arxiv.org/abs/1904.10312 (2019).

  48. Smirnova, D. A., Smirnov, L. A., Leykam, D. & Kivshar, Y. S. Topological edge states and gap solitons in the nonlinear Dirac model. Laser Photon. Rev. 13, 1900223 (2019).

    ADS  Google Scholar 

  49. Ivanov, S. K., Kartashov, Y. V., Szameit, A., Torner, L. & Konotop, V. V. Vector topological edge solitons in Floquet insulators. ACS Photon. 7, 735–745 (2020).

    Google Scholar 

  50. Tang, Q. et al. Valley Hall edge solitons in a photonic graphene. Opt. Express 29, 39755–39765 (2021).

    ADS  Google Scholar 

  51. Ren, B. et al. Dark topological valley Hall edge solitons. Nanophotonics 10, 3559–3566 (2021).

    Google Scholar 

  52. Ezawa, M. Nonlinearity-induced transition in the nonlinear Su–Schrieffer–Heeger model and a nonlinear higher-order topological system. Phys. Rev. B 104, 235420 (2021).

    ADS  Google Scholar 

  53. Ezawa, M. Nonlinearity-induced chiral solitonlike edge states in Chern systems. Phys. Rev. B 106, 195423 (2022).

    ADS  Google Scholar 

  54. **a, S. et al. Nontrivial coupling of light into a defect: the interplay of nonlinearity and topology. Light Sci. Appl. 9, 147 (2020).

    ADS  Google Scholar 

  55. Guo, M. et al. Weakly nonlinear topological gap solitons in Su–Schrieffer–Heeger photonic lattices. Opt. Lett. 45, 6466–6469 (2020).

    ADS  Google Scholar 

  56. Pernet, N., et al. Gap solitons in a one-dimensional driven-dissipative topological lattice. Nat. Phys. 18, 678–684 (2022).

  57. Mukherjee, S. & Rechtsman, M. C. Observation of Floquet solitons in a topological bandgap. Science 368, 856–859 (2020).

    ADS  Google Scholar 

  58. Davis, K. M., Miura, K., Sugimoto, N. & Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996).

    ADS  Google Scholar 

  59. Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B 43, 163001 (2010).

    ADS  Google Scholar 

  60. Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge states and the bulk–edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013).

    Google Scholar 

  61. Mukherjee, S. & Rechtsman, M. C. Period-doubled Floquet solitons. Optica 10, 1310–1315 (2023).

  62. Mukherjee, S. & Rechtsman, M. C. Observation of unidirectional solitonlike edge states in nonlinear Floquet topological insulators. Phys. Rev. X 11, 041057 (2021).

    Google Scholar 

  63. Maczewsky, L. J. et al. Nonlinearity-induced photonic topological insulator. Science 370, 701–704 (2020).

    ADS  MathSciNet  Google Scholar 

  64. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).

    ADS  MathSciNet  Google Scholar 

  65. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pum**, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017).

    ADS  Google Scholar 

  66. Peterson, C. W., Benalcazar, W. A., Hughes, T. L. & Bahl, G. A quantized microwave quadrupole insulator with topologically protected corner states. Nature 555, 346–350 (2018).

    ADS  Google Scholar 

  67. Mittal, S. et al. Photonic quadrupole topological phases. Nat. Photon. 13, 692–696 (2019).

    ADS  Google Scholar 

  68. Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018).

    ADS  Google Scholar 

  69. Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).

    Google Scholar 

  70. Ota, Y. et al. Photonic crystal nanocavity based on a topological corner state. Optica 6, 786–789 (2019).

    ADS  Google Scholar 

  71. Benalcazar, W. A., Teo, J. C. Y. & Hughes, T. L. Classification of two-dimensional topological crystalline superconductors and Majorana bound states at disclinations. Phys. Rev. B 89, 224503 (2014).

    ADS  Google Scholar 

  72. Zhang, Y., Kartashov, Y. V., Torner, L., Li, Y. & Ferrando, A. Nonlinear higher-order polariton topological insulator. Opt. Lett. 45, 4710–4713 (2020).

    ADS  Google Scholar 

  73. Tao, Y.-L., Dai, N., Yang, Y.-B., Zeng, Q.-B. & Xu, Y. Hinge solitons in three-dimensional second-order topological insulators. New J. Phys. 22, 103058 (2020).

    ADS  MathSciNet  Google Scholar 

  74. Banerjee, R., Mandal, S. & Liew, T. C. H. Coupling between exciton–polariton corner modes through edge states. Phys. Rev. Lett. 124, 063901 (2020).

    ADS  Google Scholar 

  75. Zhang, W. et al. Low-threshold topological nanolasers based on the second-order corner state. Light Sci. Appl. 9, 109 (2020).

    ADS  Google Scholar 

  76. Han, C., Kang, M. & Jeon, H. Lasing at multidimensional topological states in a two-dimensional photonic crystal structure. ACS Photon. 7, 2027–2036 (2020).

    Google Scholar 

  77. Kim, H.-R. et al. Multipolar lasing modes from topological corner states. Nat. Commun. 11, 5758 (2020).

    ADS  Google Scholar 

  78. Wu, L.-H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    ADS  Google Scholar 

  79. Zangeneh-Nejad, F. & Fleury, R. Nonlinear second-order topological insulators. Phys. Rev. Lett. 123, 053902 (2019).

    ADS  Google Scholar 

  80. Kirsch, M. S. et al. Nonlinear second-order photonic topological insulators. Nat. Phys. 17, 995–1000 (2021).

    Google Scholar 

  81. Jung, M., Yu, Y. & Shvets, G. Exact higher-order bulk–boundary correspondence of corner-localized states. Phys. Rev. B 104, 195437 (2021).

    ADS  Google Scholar 

  82. Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pum** in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    ADS  Google Scholar 

  83. Verbin, M., Zilberberg, O., Kraus, Y. E., Lahini, Y. & Silberberg, Y. Observation of topological phase transitions in photonic quasicrystals. Phys. Rev. Lett. 110, 076403 (2013).

    ADS  Google Scholar 

  84. Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nat. Phys. 12, 350–354 (2016).

    Google Scholar 

  85. Citro, R. & Aidelsburger, M. Thouless pum** and topology. Nat. Rev. Phys. 5, 87–101 (2023).

    Google Scholar 

  86. Jürgensen, M., Mukherjee, S. & Rechtsman, M. C. Quantized nonlinear Thouless pum**. Nature 596, 63–67 (2021).

    ADS  Google Scholar 

  87. Fu, Q., Wang, P., Kartashov, Y. V., Konotop, V. V. & Ye, F. Nonlinear Thouless pum**: solitons and transport breakdown. Phys. Rev. Lett. 128, 154101 (2022).

    ADS  Google Scholar 

  88. Jürgensen, M. & Rechtsman, M. C. Chern number governs soliton motion in nonlinear Thouless pumps. Phys. Rev. Lett. 128, 113901 (2022).

    ADS  Google Scholar 

  89. Mostaan, N., Grusdt, F. & Goldman, N. Quantized topological pum** of solitons in nonlinear photonics and ultracold atomic mixtures. Nat. Commun. 13, 5997 (2022).

    ADS  Google Scholar 

  90. Jürgensen, M., Mukherjee, S., Jörg, C. & Rechtsman, M. C. Quantized fractional Thouless pum** of solitons. Nat. Phys. 19, 420–426 (2023).

  91. **a, S. et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science 372, 72–76 (2021).

    ADS  Google Scholar 

  92. Komis, I. et al. Robustness versus sensitivity in non-Hermitian topological lattices probed by pseudospectra. Phys. Rev. Res. 4, 043219 (2022).

    Google Scholar 

  93. Leykam, D., Mittal, S., Hafezi, M. & Chong, Y. D. Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices. Phys. Rev. Lett. 121, 023901 (2018).

    ADS  Google Scholar 

  94. Mittal, S., Moille, G., Srinivasan, K., Chembo, Y. K. & Hafezi, M. Topological frequency combs and nested temporal solitons. Nat. Phys. 17, 1169–1176 (2021).

  95. Dobrykh, D. A., Yulin, A. V., Slobozhanyuk, A. P., Poddubny, A. N. & Kivshar, Y. S. Nonlinear control of electromagnetic topological edge states. Phys. Rev. Lett. 121, 163901 (2018).

    ADS  Google Scholar 

  96. Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019).

    ADS  Google Scholar 

  97. Hadad, Y., Khanikaev, A. B. & Alu, A. Self-induced topological transitions and edge states supported by nonlinear staggered potentials. Phys. Rev. B 93, 155112 (2016).

    ADS  Google Scholar 

  98. Bisianov, A., Wimmer, M., Peschel, U. & Egorov, O. A. Stability of topologically protected edge states in nonlinear fiber loops. Phys. Rev. A 100, 063830 (2019).

    ADS  Google Scholar 

  99. Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    ADS  MathSciNet  Google Scholar 

  100. Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    ADS  Google Scholar 

  101. Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41–45 (2020).

    ADS  Google Scholar 

  102. Li, J., Chu, R.-L., Jain, J. K. & Shen, S.-Q. Topological Anderson insulator. Phys. Rev. Lett. 102, 136806 (2009).

    ADS  Google Scholar 

  103. Groth, C. W., Wimmer, M., Akhmerov, A. R., J.Tworzydlo, & Beenakker, C. W. J. Theory of the topological Anderson insulator. Phys. Rev. Lett. 103, 196805 (2009).

    ADS  Google Scholar 

  104. Titum, P., Lindner, N. H., Rechtsman, M. C. & Refael, G. Disorder-induced Floquet topological insulators. Phys. Rev. Lett. 114, 056801 (2015).

    ADS  Google Scholar 

  105. Faugno, W. N. & Ozawa, T. Interaction-induced non-Hermitian topological phases from a dynamical gauge field. Phys. Rev. Lett. 129, 180401 (2022).

    ADS  MathSciNet  Google Scholar 

  106. Benalcazar, W. A. et al. Higher-order topological pum** and its observation in photonic lattices. Phys. Rev. B 105, 195129 (2022).

    ADS  Google Scholar 

  107. Vaidya, V. D. et al. Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Sci. Adv. 6, eaba9186 (2020).

    ADS  MathSciNet  Google Scholar 

  108. Monat, C. et al. InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser. Appl. Phys. Lett. 81, 5102–5104 (2002).

    ADS  Google Scholar 

Download references

Acknowledgements

M.C.R. acknowledges the support of the Office of Naval Research under grant numbers N00014-20-1-2325, N00014-23-1-2102 and N00014-18-1-2595, the Air Force Office of Scientific Research under grant number FA9550-22-1-0339, as well as the Packard Foundation under fellowship number 2017-66821. A.S. acknowledges funding from Deutsche Forschungsgemeinschaft (SFB 1477 “Light-Matter Interactions at Interfaces”, project no. 441234705, and IRTG 2676/1-2023 ‘Imaging of Quantum Systems’, project no. 437567992), the FET Open Grant EPIQUS (grant no. 899368) within the framework of the European H2020 programme for Excellent Science, as well as the Krupp von Bohlen and Halbach foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the writing.

Corresponding authors

Correspondence to Alexander Szameit or Mikael C. Rechtsman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szameit, A., Rechtsman, M.C. Discrete nonlinear topological photonics. Nat. Phys. 20, 905–912 (2024). https://doi.org/10.1038/s41567-024-02454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02454-8

  • Springer Nature Limited

Navigation