Log in

Investigation of the chemical changes and mechanism of the epoxy-amine system by in situ infrared spectroscopy and two-dimensional correlation analysis

  • Original Article
  • Published:
Polymer Journal Submit manuscript

Abstract

A simple and effective method based on in situ infrared spectroscopy and two-dimensional (2D) correlation analysis was applied to research the chemical changes and curing reaction mechanism of epoxy resin and amine curing agents. It is generally agreed that the epoxy groups in epoxy resin react with amino groups to form new C–N and hydroxyl groups during the curing reaction process. However, detailed information about the curing reaction mechanism of epoxy resin and amine curing agents has rarely been reported. In this work, the curing reaction mechanism can be deeply understood from the results of 2D correlation analysis. Due to the nucleophilic addition reaction of amino and epoxy groups, the nitrogen atoms of primary amines easily combine with the carbon atoms in epoxy groups, which forms new C–N groups. Then, the C–O bonds in epoxy groups break; finally, as the N–H bonds in primary amines break, the hydrogen atoms combine with the oxygen atoms to form new hydroxyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Delor-Jestin F, Drouin D, Cheval PY, Lacoste J. Thermal and photochemical ageing of epoxy resin - influence of curing agents. Polym Degrad Stabil. 2006;91:1247–55.

    Article  CAS  Google Scholar 

  2. Damian C, Espuche E, Escoubes M. Influence of three aging types (thermal oxidation, radiochemical and hydrolytic aging) on the structure and gas transport properties of epoxy-amine resins. Polym Degrad Stabil. 2001;72:447–58.

    Article  CAS  Google Scholar 

  3. Kacar G, Peters EAJF, De With G. Mesoscopic simulations for the molecular and network structure of a thermoset polymer. Soft Matter. 2013;9:5785–93.

    Article  CAS  Google Scholar 

  4. Gao L, Zhang QJ, Li H, Yu S, Zhong WH, Sui G, et al. Effect of epoxy monomer structure on the curing process and thermo-mechanical characteristics of tri-functional epoxy/amine systems: a methodology combined atomistic molecular simulation with experimental analyses. Polym Chem. 2017;8:2016–27.

    Article  CAS  Google Scholar 

  5. Tanaka Y, Kakiuchi H. Study of epoxy compounds. Part VI. Curing reactions of epoxy resin and acid anhydride with amine, acid, alcohol, and phenol as catalysts. J Polym Sci A. 1964;2:3405–30.

    CAS  Google Scholar 

  6. Maiorana A, Reano AF, Centore R, Grimaldi M, Balaguer P, Allais F, et al. Structure property relationships of biobased n-alkyl bisferulate epoxy resins. Green Chem. 2016;18:4961–73.

    Article  CAS  Google Scholar 

  7. Wang S, Ma SQ, Xu CX, Liu Y, Dai JY, Wang ZB, et al. Vanillin-derived high-performance flame retardant epoxy resins: facile synthesis and properties. Macromolecules. 2017;50:1892–901.

    Article  CAS  Google Scholar 

  8. Qi Y, Wang JY, Kou Y, Pang HC, Zhang SH, Li N, et al. Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock. Nat Commun. 2019;10:1–9.

    Article  Google Scholar 

  9. Tang LM, Weder C. Cellulose whisker/epoxy resin nanocomposites. ACS Appl Mater Interfaces. 2010;2:1073–80.

    Article  CAS  PubMed  Google Scholar 

  10. Huang K, Liu ZS, Zhang JW, Li SH, Li M, **a JL, et al. Epoxy monomers derived from tung oil fatty acids and its regulable thermosets cured in two synergistic ways. Biomacromolecules. 2014;15:837–43.

    Article  CAS  PubMed  Google Scholar 

  11. Liu T, Zhang LD, Chen RS, Wang LW, Han B, Meng Y, et al. A nitrogen-free tetrafunctional epoxy and its DDS-cured high performance matrix for aerospace applications. Ind Eng Chem Res. 2017;56:7708–19.

    Article  CAS  Google Scholar 

  12. Vidil T, Tournilhac F, Musso S, Robisson A, Leibler L. Control of reactions and network structures of epoxy thermosets. Prog Polym Sci. 2016;62:126–79.

    Article  CAS  Google Scholar 

  13. Zhu J, Peng H, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AM, et al. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater. 2004;14:643–8.

    Article  CAS  Google Scholar 

  14. Commarieu B, Potier J, Compaore M, Dessureault S, Goodall BL, Li X, et al. Ultrahigh Tg epoxy thermosets based on insertion polynorbornenes. Macromolecules. 2016;49:920–5.

    Article  CAS  Google Scholar 

  15. Huang XY, Zhi CY, Jiang PK, Golberg D, Bando Y, Tanaka T. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv Funct Mater. 2013;23:1824–31.

    Article  CAS  Google Scholar 

  16. Huang CY, Sun XT, Yuan HF, Song CF, Meng Y, Li XY. Study on the reactivity and kinetics of primary and secondary amines during epoxy curing by NIR spectroscopy combined with multivariate analysis. Vibrational Spectrosc. 2020;106:102993–3002.

    Article  CAS  Google Scholar 

  17. Yamasaki H, Morita S. Multivariate curve resolution using a combination of mid-infrared and near-infrared spectra for the analysis of isothermal epoxy curing reaction. Spectrochim Acta A Mol Biomol Spectrosc. 2018;197:114–20.

    Article  CAS  PubMed  Google Scholar 

  18. Park SJ, Kwak GH, Sumita M, Lee JR. Cure and reaction kinetics of an anhydride-cured epoxy resin catalyzed by N-benzylpyrazinium salts using nearinfrared spectroscopy. Polym Eng Sci. 2000;40:2569–76.

    Article  CAS  Google Scholar 

  19. George GA, Cole-Clarke P, John NS, Friend G. Real-time monitoring of the cure reaction of a TGDDM/DDS epoxy resin using fiber optic FT-IR. J Appl Polym Sci. 1991;42:643–57.

    Article  CAS  Google Scholar 

  20. Pandita SD, Wang LW, Mahendran RS, Machavaram VR, Irfan MS, Harris D, et al. Simultaneous DSC-FTIR spectroscopy: comparison of cross-linking kinetics of an epoxy/amine resin system. Thermochim Acta. 2012;543:9–17.

    Article  CAS  Google Scholar 

  21. Mijović J, Kenny J, Nicolais L. Comparison of kinetic and rheological evaluation of gel time for an amine-epoxy system. Polymer. 1993;34:207–9.

    Article  Google Scholar 

  22. Yang Y, Lee L. Rheokinetic studies of unsaturated polyester resins. Polym Process Eng. 1987;5:327–56.

    CAS  Google Scholar 

  23. Hardis R, Jessop JLP, Peters FE, Kessler MR. Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA, Compos. Appl Sci Manuf 2013;49:100–8.

    Article  CAS  Google Scholar 

  24. Li Q, Li XY, Meng Y. Curing of DGEBA epoxy using a phenol-terminated hyperbranched curing agent: Cure kinetics, gelation, and the TTT cure diagram. Thermochim Acta. 2012;549:69–80.

    Article  CAS  Google Scholar 

  25. MacKinnon AJ, Jenkins SD, McGrail PT, Pethrick RA. A dielectric, mechanical, rheological and electron microscopy study of cure and properties of a thermoplastic-modified epoxy resin. Macromolecules. 1992;25:3492–9.

    Article  CAS  Google Scholar 

  26. Rocks J, Rintoul L, Vohwinkel F, George G. The kinetics and mechanism of cure of an amino-glycidyl epoxy resin by a co-anhydride as studied by FT-Raman spectroscopy. Polymer. 2004;45:6799–811.

    Article  CAS  Google Scholar 

  27. Barabanova AI, Lokshin BV, Kharitonova EP, Afanasyev ES, Askadskii AA, Philippova OE. Curing cycloaliphatic epoxy resin with 4-methylhexahydrophthalic anhydride: catalyzed vs. uncatalyzed reaction. Polymer. 2019;178:121590.

    Article  CAS  Google Scholar 

  28. Zhu ZQ, Sun XT, Yuan HF, Song CF, Cao YN, Li XY. Determination of gel time and gel point of epoxy-amine thermosets by in-situ near infrared spectroscopy. Polym Test. 2018;72:416–22.

    Article  CAS  Google Scholar 

  29. Huang H, Malkov S, Coleman M, Painter P. Application of two-dimensional correlation infrared spectroscopy to the study of miscible polymer blends. Macromolecules. 2003;36:8156–63.

    Article  CAS  Google Scholar 

  30. Park Y, Hashimoto C, Hashimoto T, Hirokawa Y, Jung YM, Ozaki Y. Reaction-induced self-assembly of gel structure: a new insight into chemical gelation process of N-isopropylacrylamide as studied by two-dimensional infrared correlation spectroscopy. Macromolecules. 2013;46:3587–602.

    Article  CAS  Google Scholar 

  31. He ZP, Zhao TT, Zhou XF, Liu Z, Huang H. Sequential order of the secondary structure transitions of proteins under external perturbations: regenerated silk fibroin under thermal treatment. Anal Chem. 2017;89:5534–41.

    Article  CAS  PubMed  Google Scholar 

  32. Sun BJ, Lin YN, Wu PY, Siesler HW. A FTIR and 2D-IR spectroscopic study on the microdynamics phase separation mechanism of the poly(N-isopropylacrylamide) aqueous solution. Macromolecules. 2008;41:1512–20.

    Article  CAS  Google Scholar 

  33. Zhang JM, Tsuji H, Noda I, Ozaki Y. Structural changes and crystallization dynamics of poly(L-lactide) during the cold-crystallization process investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules. 2004;37:6433–9.

    Article  CAS  Google Scholar 

  34. Zhou T, Zhang AM, Zhao CS, Liang HW, Wu ZY, **a JK. Molecular chain movements and transitions of SEBS above room temperature studied by moving-window two-dimensional correlation infrared spectroscopy. Macromolecules. 2007;40:9009–17.

    Article  CAS  Google Scholar 

  35. Li L, Wu QL, Li SJ, Wu PY. Study of the infrared spectral features of an epoxy curing mechanism. Appl Spectrosc. 2008;62:1129–36.

    Article  CAS  PubMed  Google Scholar 

  36. Noda I. Generalized two-dimensional correlation method applicable to infrared, raman, and other types of spectroscopy. Appl Spectrosc. 1993;47:1329–36.

    Article  CAS  Google Scholar 

  37. Morsch S, Liu YW, Lyon SB, Gibbon SR, Gabriele B, Malanin M, et al. Examining the early stages of thermal oxidative degradation in epoxy-amine resins. Polym Degrad Stab. 2020;176:109147.

    Article  CAS  Google Scholar 

  38. Doblies A, Boll B, Fiedler B. Prediction of thermal exposure and mechanical behavior of epoxy resin using artificial neural networks and fourier transform infrared spectroscopy. Polymers. 2019;11:363–78.

    Article  PubMed Central  Google Scholar 

  39. Yamasaki H, Morita S. Identification of the epoxy curing mechanism under isothermal conditions by thermal analysis and infrared spectroscopy. J Mol Struct. 2014;1069:164–70.

    Article  CAS  Google Scholar 

  40. Yamasaki H, Morita S. Two-step curing reaction of epoxy resin studied by thermal analysis and infrared spectroscopy. Appl Spectrosc. 2012;66:926–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Technical Project of Shenzhen (JSGG20201102160001003) and the National Science and Technology Program of Shenzhen (CJGJZD20210408092602006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhipeng He or Guoli Gao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Lv, W., Gao, G. et al. Investigation of the chemical changes and mechanism of the epoxy-amine system by in situ infrared spectroscopy and two-dimensional correlation analysis. Polym J 54, 1445–1452 (2022). https://doi.org/10.1038/s41428-022-00697-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00697-x

  • Springer Nature Limited

Navigation