Facts

  • Cardiomyocyte apoptosis plays a key role in the pathogenesis of diabetic cardiomyopathy.

  • Targeting hyperglycemia reduces cytotoxicity in cardiomyocytes.

  • Some new and old small-molecule chemical drugs are in ongoing clinical trials for the treatment of DCM.

  • Traditional Chinese medicine and some natural products can exert protective effects against diabetic cardiomyopathy.

Open questions

  • How do novel biomarkers identify early diabetic cardiomyopathy?

  • What is the mechanism by which hyperglycemia leads to cardiomyocyte apoptosis?

  • How is hyperglycemia involved in the progression of cardiac fibroblast activation?

  • Can some emerging treatment strategies for diabetic cardiomyopathy be used in clinical practice?

Introduction

With the growth of the economy, changes in lifestyles and diets, and the aging of the population, the number of diabetic patients and disease incidence are increasing at an alarming rate. According to statistics from the International Diabetes Federation, as of 2021, there were ~537 million people aged 20–79 with diabetes worldwide, and it is expected that this number will reach 784 million by 2045. Diabetic cardiomyopathy (DCM), which was first introduced by Rullber in 1972, is a common and severe complication of diabetes that can lead to the development of heart failure. DCM, which is the dominant cause of heart failure in patients with diabetes, is caused by abnormal glucose metabolism, resulting in structural heart defects and dysfunction without other cardiac risk factors, such as coronary artery disease, hypertension, and severe valvular diseases [1]. At present, although there are therapeutic strategies available to treat DCM, treatment is mainly focused on controlling blood glucose and blood lipids, and there is a lack of effective drugs or strategies targeting damaged myocardial tissue. Therefore, understanding the clinical symptoms, identifying early and highly sensitive diagnostic biomarkers, elucidating the underlying pathogenetic mechanisms, and develo** new targeted interventions for DCM, are critical for improving the prognosis of patients and preventing the occurrence and development of the disease.

Clinical symptoms and diagnosis of DCM

DCM was initially described as a diabetes mellitus (DM)-induced pathophysiological condition in which cardiac dysfunction and heart failure occurred in the absence of coronary artery disease, hypertension, and other valvular heart disease. The initial symptoms of DCM are mild left ventricular stiffness, slightly decreased compliance, and diastolic dysfunction, which are easily ignored by patients, thus missing the best opportunity for diagnosis and treatment. The subsequent clinical manifestations of DCM are arrhythmia, angina pectoris, and eventually the development of congestive heart failure, which is life-threatening in some severe cases. At present, many noninvasive techniques, including electrocardiography, echocardiography, chest radiography, pulsed-wave Doppler tissue imaging, computed tomography, magnetic resonance imaging, and endocardial biopsy, have been used to detect changes in cardiac architecture and function [2]. Endocardial biopsy, which is the gold standard for the clinical diagnosis of DCM, can detect cardiac hypertrophy, necrosis, myocardial fibrosis, and other pathological changes, but this method cannot show the abnormal diastolic function of the heart in the early subclinical stage and is associated with a certain degree of trauma [3]. Given the rare clinical symptoms in the early stage of DCM, routine noninvasive examinations are almost ineffective. Therefore, researchers have focused on investigating feasible methods for the early diagnosis of DCM.

Evidence has shown that the serum glycosylated hemoglobin (HbA1c) and cardiac troponin I (cTnI) levels in the DCM group were significantly higher than those in the diabetes mellitus alone group, suggesting that serum HbA1c and cTnI levels were closely related to DCM and could serve as promising diagnostic markers for DCM [96]. β-receptor antagonists can reduce cardiomyocyte uptake of glucose, increase the levels of oxidative stress factors (SOD1 and SOD2), and inhibit the production of oxidative stress products in DCM to modulate cardiac metabolism and improve cardiac function [97, 98]. Ca2+ channel antagonists can directly act on L-type Ca2+ channels to reduce intracellular Ca2+ concentrations, thereby alleviating cardiac damage in patients with DCM [99]. Long-term verapamil treatment can effectively improve myocardial hypertrophy and fibrosis by regulating of the intracellular and extracellular Ca2+ balance (Fig. 3) [100, 101].

Of note, there are some new and old small-molecule chemical drugs in completed and ongoing clinical trials for the treatment of DCM (Table 1). Among them, AT-001 (Caficrestat) and Ninerafaxstat (IMB-1018972) are newly-developed small-molecule chemical drugs for the treatment of DCM. AT-001 is a novel and potent oral aldose reductase inhibitor targeting AKR1B1 that is in phase 3 clinical development for the treatment of DCM (https://synapse.zhihuiya.com/clinical-progress-detail/0a5aea2aa5058d22852a258dea9d44aa). A clinical trial (NCT04365699) on the role of COVID-19 with and without treatment with AT-001 on cardiac structure and function in patients hospitalized for the management of COVID-19 infection was completed and revealed a reduction in the mortality of the AT-001 treatment group (https://synapse.zhihuiya.com/clinical-progress-detail/ed5e59202eae554e9d29a40542aea820). A clinical study evaluating the effects of Ninerafaxstat on myocardial energetics, metabolism, and functions in T2DM and obesity with HFpEF is still underway. Trimetazidine, an inhibitor of ACAA2, can improve DCM by inhibiting Nox2/TRPC3-induced oxidative stress [102], reducing the deposition of fatty acids [103], preventing fibrosis, reducing apoptosis, and enhancing autophagy [104]. The effects of trimetazidine on left ventricular function and inflammatory markers in type 2 diabetic patients were tested in a phase 2 clinical trial (https://synapse.zhihuiya.com/clinical-progress-detail/55d254aea55e524d82a2e2534e5e282e). Alpha-lipoic acid, which is a small molecule with antioxidant properties, was reported to alleviate cardiac remodeling in the diabetic heart [105], and a clinical study of the effects of alpha-lipoic acid on DCM is ongoing (https://synapse.zhihuiya.com/clinical-progress-detail/08490325eaa4e895d5a0e53324e54822). Empagliflozin and dapagliflozin, which are the initial drugs targeting SGLT2, were shown to protect cardiac function in diabetic models [106,107,

References

  1. Grubic RP, Planinic Z, Liberati PA, Sikic J, Galic E, Rotkvic L. The mystery of diabetic cardiomyopathy: from early concepts and underlying mechanisms to novel therapeutic possibilities. Int J Mol Sci. 2021;22:5973.

    Article  Google Scholar 

  2. Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12:144–53.

    Article  CAS  PubMed  Google Scholar 

  3. Maya L, Villarreal FJ. Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis. J Mol Cell Cardiol. 2010;48:524–9.

    Article  CAS  PubMed  Google Scholar 

  4. Ren J, Chang M, Song S, Zhao R, **ng X, Chang X. Predictive value of serum lipoprotein-associated phospholipase A2 for type 2 diabetes mellitus complicated with metabolic syndrome in elderly patients. Clin. Lab. 2022;68:1636–42.

    Article  CAS  Google Scholar 

  5. Wang FJ, Wang KK, Chen XB, Liu JH, Gao S, Liu X. Intervention effect of trillium tschonoskii maxim extract solution on myocardial injury in diabetic rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2016;32:177–80.

    CAS  PubMed  Google Scholar 

  6. Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122:624–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lyngbakken MN, Myhre PL, Rosjo H, Omland T. Novel biomarkers of cardiovascular disease: applications in clinical practice. Crit Rev Clin Lab Sci. 2019;56:33–60.

    Article  CAS  PubMed  Google Scholar 

  8. Kumric M, Ticinovic KT, Borovac JA, Bozic J. Role of novel biomarkers in diabetic cardiomyopathy. World J Diabetes. 2021;12:685–705.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kenny HC, Abel ED. Heart failure in type 2 diabetes mellitus. Circ Res. 2019;124:121–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chelu MG, Wehrens XH. Sarcoplasmic reticulum calcium leak and cardiac arrhythmias. Biochem Soc Trans. 2007;35:952–6.

    Article  CAS  PubMed  Google Scholar 

  11. Lebedev DA, Lyasnikova EA, Vasilyeva EY, Babenko AY, Shlyakhto EV. Type 2 diabetes mellitus and chronic heart failure with midrange and preserved ejection fraction: a focus on serum biomarkers of fibrosis. J Diabetes Res. 2020;2020:6976153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shaver A, Nichols A, Thompson E, Mallick A, Payne K, Jones C, et al. Role of serum biomarkers in early detection of diabetic cardiomyopathy in the west virginian population. Int J Med Sci. 2016;13:161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deng J, Yan F, Tian J, Qiao A, Yan D. Potential clinical biomarkers and perspectives in diabetic cardiomyopathy. Diabetol Metab Syndr. 2023;15:35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jakubik D, Fitas A, Eyileten C, Jarosz-Popek J, Nowak A, Czajka P, et al. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Cardiovasc Diabetol. 2021;20:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He X, Kuang G, Wu Y, Ou C. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin Transl Med. 2021;11:e468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fazakerley DJ, Lawrence SP, Lizunov VA, Cushman SW, Holman GD. A common trafficking route for GLUT4 in cardiomyocytes in response to insulin, contraction and energy-status signalling. J Cell Sci. 2009;122:727–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 2014;57:660–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia 2018;61:21–28.

    Article  CAS  PubMed  Google Scholar 

  19. Isfort M, Stevens SC, Schaffer S, Jong CJ, Wold LE. Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail Rev. 2014;19:35–48.

    Article  CAS  PubMed  Google Scholar 

  20. Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, et al. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest. 2007;117:3930–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Norton GR, Candy G, Woodiwiss AJ. Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 1996;93:1905–12.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Guo YN, Liu J, Wang LH, Wu HQ, Wang T, et al. Plantamajoside attenuates cardiac fibrosis via inhibiting AGEs activated-RAGE/autophagy/EndMT pathway. Phytother Res. 2023;37:834–47.

    Article  CAS  PubMed  Google Scholar 

  23. Qi B, He L, Zhao Y, Zhang L, He Y, Li J, et al. Akap1 deficiency exacerbates diabetic cardiomyopathy in mice by NDUFS1-mediated mitochondrial dysfunction and apoptosis. Diabetologia 2020;63:1072–87.

    Article  CAS  PubMed  Google Scholar 

  24. Huang PC, Wang GJ, Fan MJ, Asokan SM, Liu YT, Padma VV, et al. Cellular apoptosis and cardiac dysfunction in STZ-induced diabetic rats attenuated by anthocyanins via activation of IGFI-R/PI3K/Akt survival signaling. Environ Toxicol. 2017;32:2471–80.

    Article  PubMed  Google Scholar 

  25. Guo Z, Tuo H, Tang N, Liu FY, Ma SQ, An P, et al. Neuraminidase 1 deficiency attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory via AMPK-SIRT3 pathway in diabetic cardiomyopathy mice. Int J Biol Sci. 2022;18:826–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu MX, Wang SH, **e Y, Chen ZT, Guo Q, Yuan WL, et al. Interleukin-33 alleviates diabetic cardiomyopathy through regulation of endoplasmic reticulum stress and autophagy via insulin-like growth factor-binding protein 3. J Cell Physiol. 2021;236:4403–19.

    Article  CAS  PubMed  Google Scholar 

  27. Tian JH, Wu Q, He YX, Shen QY, Rekep M, Zhang GP, et al. Zonisamide, an antiepileptic drug, alleviates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress. Acta pharmacol sin. 2021;42:393–403.

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y, **n Y, Cheng Y, Liu X. Mitochondria-endoplasmic reticulum contacts: the promising regulators in diabetic cardiomyopathy. Oxid Med Cell Longev. 2022;2022:2531458.

    PubMed  PubMed Central  Google Scholar 

  29. Preetha RM, Salin RP, Nair A, Ranjith S, Rajankutty K, Raghu KG. In vitro and in vivo studies reveal the beneficial effects of chlorogenic acid against ER stress mediated ER-phagy and associated apoptosis in the heart of diabetic rat. Chem Biol Interact. 2022;351:109755.

    Article  Google Scholar 

  30. Zhao H, Liu H, Yang Y, Lan T, Wang H, Wu D. Hydrogen sulfide plays an important role by regulating endoplasmic reticulum stress in diabetes-related diseases. Int J Mol Sci. 2022;23:7170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dhalla NS, Shah AK, Tappia PS. Role of oxidative stress in metabolic and subcellular abnormalities in diabetic cardiomyopathy. Int J Mol Sci. 2020;21:2413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med. 2021;169:317–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma T, Huang X, Zheng H, Huang G, Li W, Liu X, et al. SFRP2 improves mitochondrial dynamics and mitochondrial biogenesis, oxidative stress, and apoptosis in diabetic cardiomyopathy. Oxid Med Cell Longev. 2021;2021:9265016.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lin C, Guo Y, **a Y, Li C, Xu X, Qi T, et al. FNDC5/Irisin attenuates diabetic cardiomyopathy in a type 2 diabetes mouse model by activation of integrin alphaV/beta5-AKT signaling and reduction of oxidative/nitrosative stress. J Mol Cell Cardiol. 2021;160:27–41.

    Article  CAS  PubMed  Google Scholar 

  36. Ren BC, Zhang YF, Liu SS, Cheng XJ, Yang X, Cui XG, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med. 2020;24:12355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abukhalil MH, Althunibat OY, Aladaileh SH, Al-Amarat W, Obeidat HM, Al-Khawalde A, et al. Galangin attenuates diabetic cardiomyopathy through modulating oxidative stress, inflammation and apoptosis in rats. Biomed Pharmacother. 2021;138:111410.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X, Ma X, Zhao M, Zhang B, Chi J, Liu W, et al. H2 and H3 relaxin inhibit high glucose-induced apoptosis in neonatal rat ventricular myocytes. Biochimie 2015;108:59–67.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Qi H, Wang Y, Wu M, Cao Y, Huang W, et al. Allicin protects against myocardial apoptosis and fibrosis in streptozotocin-induced diabetic rats. Phytomedicine 2012;19:693–8.

    Article  CAS  PubMed  Google Scholar 

  40. Khanna S, Singh GB, Khullar M. Nitric oxide synthases and diabetic cardiomyopathy. Nitric Oxide. 2014;43:29–34.

    Article  CAS  PubMed  Google Scholar 

  41. Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease. Circ Res. 2020;126:1501–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li G, Yang L, Feng L, Yang J, Li Y, An J, et al. Syringaresinol protects against type 1 diabetic cardiomyopathy by alleviating inflammation responses, cardiac fibrosis, and oxidative stress. Mol Nutr Food Res. 2020;64:e2000231.

    Article  PubMed  Google Scholar 

  43. Sun Y, Ding S. NLRP3 inflammasome in diabetic cardiomyopathy and exercise intervention. Int J Mol Sci. 2021;22:13228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang F, Qin Y, Wang Y, Meng S, **an H, Che H, et al. Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int J Biol Sci. 2019;15:1010–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Song S, Ding Y, Dai GL, Zhang Y, Xu MT, Shen JR, et al. Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacol Sin. 2021;42:230–41.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao SM, Wang YL, Guo CY, Chen JL, Wu YQ. Progressive decay of Ca2+ homeostasis in the development of diabetic cardiomyopathy. Cardiovasc Diabetol. 2014;13:75.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dia M, Gomez L, Thibault H, Tessier N, Leon C, Chouabe C, et al. Reduced reticulum-mitochondria Ca(2+) transfer is an early and reversible trigger of mitochondrial dysfunctions in diabetic cardiomyopathy. Basic Res Cardiol. 2020;115:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Torre E, Arici M, Lodrini AM, Ferrandi M, Barassi P, Hsu SC, et al. SERCA2a stimulation by istaroxime improves intracellular Ca2+ handling and diastolic dysfunction in a model of diabetic cardiomyopathy. Cardiovasc Res. 2022;118:1020–32.

    Article  CAS  PubMed  Google Scholar 

  49. Chen H, Yang D, Han F, Tan J, Zhang L, **ao J, et al. The bacterial T6SS effector EvpP prevents NLRp3 inflammasome activation by inhibiting the ca(2+)-dependent MAPK-Jnk pathway. Cell Host Microb. 2017;21:47–58.

    Article  CAS  Google Scholar 

  50. Wu X, Liu Z, Yu XY, Xu S, Luo J. Autophagy and cardiac diseases: therapeutic potential of natural products. Med Res Rev. 2021;41:314–41.

    Article  CAS  PubMed  Google Scholar 

  51. Tong M, Saito T, Zhai P, Oka SI, Mizushima W, Nakamura M, et al. Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circ Res. 2019;124:1360–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chang X, Li Y, Cai C, Wu F, He J, Zhang Y, et al. Mitochondrial quality control mechanisms as molecular targets in diabetic heart. Metabolism 2022;137:155313.

    Article  CAS  PubMed  Google Scholar 

  53. Li JM, Chen FF, Li GH, Zhu JL, Zhou Y, Wei XY, et al. Soluble Klotho-integrin beta1/ERK1/2 pathway ameliorates myocardial fibrosis in diabetic cardiomyopathy. FASEB J. 2021;35:e21960.

    Article  CAS  PubMed  Google Scholar 

  54. Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev. 2021;176:113904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. **ong J, Dong X, Li S, Jiang F, Chen J, Yu S, et al. Effects of (pro)renin receptor on diabetic cardiomyopathy pathological processes in rats via the PRR-AMPK-YAP pathway. Front Physiol. 2021;12:657378.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang YC, Mou YL, **e YY. Research progress in relations between renin angiotensin system and diabetic cardiomyopathy. Sheng Li Ke Xue ** Zhan. 2011;42:269–75.

    PubMed  Google Scholar 

  57. Flack JM, Hamaty M, Staffileno BA. Renin-angiotensin-aldosterone-kinin system influences on diabetic vascular disease and cardiomyopathy. Min Electrolyte Metab. 1998;24:412–22.

    Article  CAS  Google Scholar 

  58. Westermann D, Rutschow S, Jager S, Linderer A, Anker S, Riad A, et al. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 2007;56:641–6.

    Article  CAS  PubMed  Google Scholar 

  59. Li S, Hong Y, ** X, Zhang G, Hu Z, Nie L. A new Agkistrodon halys venom-purified protein C activator prevents myocardial fibrosis in diabetic rats. Croat Med J. 2015;56:439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Duerrschmid C, Crawford JR, Reineke E, Taffet GE, Trial J, Entman ML, et al. TNF receptor 1 signaling is critically involved in mediating angiotensin-II-induced cardiac fibrosis. J Mol Cell Cardiol. 2013;57:59–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rajesh M, Mukhopadhyay P, Batkai S, Patel V, Saito K, Matsumoto S, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol. 2010;56:2115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lorenzo O, Picatoste B, Ares-Carrasco S, Ramirez E, Egido J, Tunon J. Potential role of nuclear factor kappaB in diabetic cardiomyopathy. Mediators Inflamm. 2011;2011:652097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Frangogiannis N. Transforming growth factor-beta in tissue fibrosis. J Exp Med. 2020;217:e20190103.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Toblli JE, Cao G, DeRosa G, Forcada P. Reduced cardiac expression of plasminogen activator inhibitor 1 and transforming growth factor beta1 in obese Zucker rats by perindopril. Heart 2005;91:80–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu L, Derynck R. Essential role of TGF-beta signaling in glucose-induced cell hypertrophy. Dev Cell. 2009;17:35–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kumpers P, Gueler F, Rong S, Mengel M, Tossidou I, Peters I, et al. Leptin is a coactivator of TGF-beta in unilateral ureteral obstructive kidney disease. Am J Physiol Ren Physiol. 2007;293:F1355–F1362.

    Article  Google Scholar 

  67. Zhang D, ** W, Wu R, Li J, Park SA, Tu E, et al. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-beta cytokine activation. Immunity 2019;51:671–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mizushige K, Yao L, Noma T, Kiyomoto H, Yu Y, Hosomi N, et al. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 2000;101:899–907.

    Article  CAS  PubMed  Google Scholar 

  69. Carroll JF, Tyagi SC. Extracellular matrix remodeling in the heart of the homocysteinemic obese rabbit. Am J Hypertens. 2005;18:692–8.

    Article  CAS  PubMed  Google Scholar 

  70. Biernacka A, Cavalera M, Wang J, Russo I, Shinde A, Kong P, et al. Smad3 signaling promotes fibrosis while preserving cardiac and aortic geometry in obese diabetic mice. Circ Heart Fail. 2015;8:788–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu Z, Sun J, Tong Q, Lin Q, Qian L, Park Y, et al. The role of ERK1/2 in the development of diabetic cardiomyopathy. Int J Mol Sci. 2016;17:2001.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fan Z, Dong J, Mu Y, Liu X. Nesfatin-1 protects against diabetic cardiomyopathy in the streptozotocin-induced diabetic mouse model via the p38-MAPK pathway. Bioengineered 2022;13:14670–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gilbert RE, Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet 2015;385:2107–17.

    Article  CAS  PubMed  Google Scholar 

  74. Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia 2012;55:2096–108.

    Article  CAS  PubMed  Google Scholar 

  75. Andersson C, Olesen JB, Hansen PR, Weeke P, Norgaard ML, Jorgensen CH, et al. Metformin treatment is associated with a low risk of mortality in diabetic patients with heart failure: a retrospective nationwide cohort study. Diabetologia 2010;53:2546–53.

    Article  CAS  PubMed  Google Scholar 

  76. Ammar HI, Shamseldeen AM, Shoukry HS, Ashour H, Kamar SS, Rashed LA, et al. Metformin impairs homing ability and efficacy of mesenchymal stem cells for cardiac repair in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol Heart Circ Physiol. 2021;320:H1290–H1302.

    Article  CAS  PubMed  Google Scholar 

  77. Dia M, Leon C, Chanon S, Bendridi N, Gomez L, Rieusset J, et al. Effect of metformin on T2D-induced MAM Ca(2+) uncoupling and contractile dysfunction in an early mouse model of diabetic HFpEF. Int J Mol Sci. 2022;23:3569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Almutairi M, Gopal K, Greenwell AA, Young A, Gill R, Aburasayn H, et al. The GLP-1 receptor agonist liraglutide increases myocardial glucose oxidation rates via indirect mechanisms and mitigates experimental diabetic cardiomyopathy. Can J Cardiol. 2021;37:140–50.

    Article  PubMed  Google Scholar 

  79. Seufert J, Gallwitz B. The extra-pancreatic effects of GLP-1 receptor agonists: a focus on the cardiovascular, gastrointestinal and central nervous systems. Diabetes Obes Metab. 2014;16:673–88.

    Article  CAS  PubMed  Google Scholar 

  80. Wu L, Wang K, Wang W, Wen Z, Wang P, Liu L, et al. Glucagon-like peptide-1 ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via the PPARalpha pathway. Aging Cell. 2018;17:e12763.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Birnbaum Y, Tran D, Bajaj M, Ye Y. DPP-4 inhibition by linagliptin prevents cardiac dysfunction and inflammation by targeting the Nlrp3/ASC inflammasome. Basic Res Cardiol. 2019;114:35.

    Article  PubMed  Google Scholar 

  82. Al-Rasheed NM, Al-Rasheed NM, Hasan IH, Al-Amin MA, Al-Ajmi HN, Mahmoud AM. Sitagliptin attenuates cardiomyopathy by modulating the JAK/STAT signaling pathway in experimental diabetic rats. Drug Des Devel Ther. 2016;10:2095–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Scheen AJ. Cardiovascular effects of new oral glucose-lowering agents: DPP-4 and SGLT-2 inhibitors. Circ Res. 2018;122:1439–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marfella R, D’Onofrio N, Trotta MC, Sardu C, Scisciola L, Amarelli C, et al. Sodium/glucose cotransporter 2 (SGLT2) inhibitors improve cardiac function by reducing JunD expression in human diabetic hearts. Metabolism 2022;127:154936.

    Article  CAS  PubMed  Google Scholar 

  85. Tomasoni D, Fonarow GC, Adamo M, Anker SD, Butler J, Coats A, et al. Sodium-glucose co-transporter 2 inhibitors as an early, first-line therapy in patients with heart failure and reduced ejection fraction. Eur J Heart Fail. 2022;24:431–41.

    Article  CAS  PubMed  Google Scholar 

  86. Arow M, Waldman M, Yadin D, Nudelman V, Shainberg A, Abraham NG, et al. Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc Diabetol. 2020;19:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Murarka S, Movahed MR. Diabetic cardiomyopathy. J Card Fail. 2010;16:971–9.

    Article  PubMed  Google Scholar 

  88. Al-Rasheed NM, Al-Rasheed NM, Hasan IH, Al-Amin MA, Al-Ajmi HN, Mohamad RA, et al. Simvastatin ameliorates diabetic cardiomyopathy by attenuating oxidative stress and inflammation in rats. Oxid Med Cell Longev. 2017;2017:1092015.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Min JJ, Shin BS, Lee JH, Jeon Y, Ryu DK, Kim S, et al. Effects of pravastatin on type 1 diabetic rat heart with or without blood glycemic control. J Diabetes Res. 2018;2018:1067853.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kanda M, Satoh K, Ichihara K. Effects of atorvastatin and pravastatin on glucose tolerance in diabetic rats mildly induced by streptozotocin. Biol Pharm Bull. 2003;26:1681–4.

    Article  CAS  PubMed  Google Scholar 

  91. Koh KK, Quon MJ, Han SH, Lee Y, Kim SJ, Park JB, et al. Differential metabolic effects of pravastatin and simvastatin in hypercholesterolemic patients. Atherosclerosis 2009;204:483–90.

    Article  CAS  PubMed  Google Scholar 

  92. Herman-Edelstein M, Guetta T, Barnea A, Waldman M, Ben-Dor N, Barac YD, et al. Expression of the SARS-CoV-2 receptorACE2 in human heart is associated with uncontrolled diabetes, obesity, and activation of the renin angiotensin system. Cardiovasc Diabetol. 2021;20:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bernardi S, Michelli A, Zuolo G, Candido R, Fabris B. Update on RAAS Modulation for the Treatment of Diabetic Cardiovascular Disease. J Diabetes Res. 2016;2016:8917578.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Azizi M, Menard J. Renin inhibitors and cardiovascular and renal protection: an endless quest? Cardiovasc Drugs Ther. 2013;27:145–53.

    Article  CAS  PubMed  Google Scholar 

  95. Liu W, Gong W, He M, Liu Y, Yang Y, Wang M, et al. Spironolactone protects against diabetic cardiomyopathy in streptozotocin-induced diabetic rats. J Diabetes Res. 2018;2018:9232065.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Verdonschot J, Ferreira JP, Pellicori P, Brunner-La RH, Clark AL, Cosmi F, et al. Proteomic mechanistic profile of patients with diabetes at risk of develo** heart failure: insights from the HOMAGE trial. Cardiovasc Diabetol. 2021;20:163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sharma V, Dhillon P, Wambolt R, Parsons H, Brownsey R, Allard MF, et al. Metoprolol improves cardiac function and modulates cardiac metabolism in the streptozotocin-diabetic rat. Am J Physiol Heart Circ Physiol. 2008;294:H1609–H1620.

    Article  CAS  PubMed  Google Scholar 

  98. Amour J, Loyer X, Michelet P, Birenbaum A, Riou B, Heymes C. Preservation of the positive lusitropic effect of beta-adrenoceptors stimulation in diabetic cardiomyopathy. Anesth Analg. 2008;107:1130–8.

    Article  CAS  PubMed  Google Scholar 

  99. Adeghate E, Kalasz H, Veress G, Teke K. Medicinal chemistry of drugs used in diabetic cardiomyopathy. Curr Med Chem. 2010;17:517–51.

    Article  CAS  PubMed  Google Scholar 

  100. Afzal N, Ganguly PK, Dhalla KS, Pierce GN, Singal PK, Dhalla NS. Beneficial effects of verapamil in diabetic cardiomyopathy. Diabetes 1988;37:936–42.

    Article  CAS  PubMed  Google Scholar 

  101. Borowiec AM, Wlaszczuk A, Olakowska E, Lewin-Kowalik J. TXNIP inhibition in the treatment of diabetes. Verapamil as a novel therapeutic modality in diabetic patients. Med Pharm Rep. 2022;95:243–50.

    PubMed  PubMed Central  Google Scholar 

  102. Tang SG, Liu XY, Wang SP, Wang HH, Jovanovic A, Tan W. Trimetazidine prevents diabetic cardiomyopathy by inhibiting Nox2/TRPC3-induced oxidative stress. J Pharmacol Sci. 2019;139:311–8.

    Article  CAS  PubMed  Google Scholar 

  103. Li YJ, Wang PH, Chen C, Zou MH, Wang DW. Improvement of mechanical heart function by trimetazidine in db/db mice. Acta Pharmacol Sin. 2010;31:560–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang L, Ding WY, Wang ZH, Tang MX, Wang F, Li Y, et al. Erratum to: Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy. J Transl Med 2016;14:309.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Dugbartey GJ, Wonje QL, Alornyo KK, Adams I, Diaba DE. Alpha-lipoic acid treatment improves adverse cardiac remodelling in the diabetic heart - the role of cardiac hydrogen sulfide-synthesizing enzymes. Biochem Pharmacol. 2022;203:115179.

    Article  CAS  PubMed  Google Scholar 

  106. Madonna R, Moscato S, Cufaro MC, Pieragostino D, Mattii L, Del BP, et al. Empagliflozin inhibits excessive autophagy through the AMPK/GSK3beta signaling pathway in diabetic cardiomyopathy. Cardiovasc Res. 2023;119:1175–89.

    Article  PubMed  Google Scholar 

  107. Kadosaka T, Watanabe M, Natsui H, Koizumi T, Nakao M, Koya T, et al. Empagliflozin attenuates arrhythmogenesis in diabetic cardiomyopathy by normalizing intracellular Ca(2+) handling in ventricular cardiomyocytes. Am J Physiol Heart Circ Physiol. 2023;324:H341–H354.

    Article  CAS  PubMed  Google Scholar 

  108. **ng YJ, Liu BH, Wan SJ, Cheng Y, Zhou SM, Sun Y, et al. A SGLT2 inhibitor dapagliflozin alleviates diabetic cardiomyopathy by suppressing high glucose-induced oxidative stress in vivo and in vitro. Front Pharmacol. 2021;12:708177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pofi R, Giannetta E, Feola T, Galea N, Barbagallo F, Campolo F, et al. Sex-specific effects of daily tadalafil on diabetic heart kinetics in RECOGITO, a randomized, double-blind, placebo-controlled trial. Sci Transl Med. 2022;14:l8503.

    Article  Google Scholar 

  110. Li X, Ke X, Li Z, Li B. Vaspin prevents myocardial injury in rats model of diabetic cardiomyopathy by enhancing autophagy and inhibiting inflammation. Biochem Biophys Res Commun. 2019;514:1–8.

    Article  CAS  PubMed  Google Scholar 

  111. Song YJ, Zhong CB, Wu W. Cardioprotective effects of melatonin: focusing on its roles against diabetic cardiomyopathy. Biomed Pharmacother. 2020;128:110260.

    Article  CAS  PubMed  Google Scholar 

  112. Lucas T, Bonauer A, Dimmeler S. RNA therapeutics in cardiovascular disease. Circ Res. 2018;123:205–20.

    Article  CAS  PubMed  Google Scholar 

  113. Murtaza G, Virk H, Khalid M, Lavie CJ, Ventura H, Mukherjee D, et al. Diabetic cardiomyopathy - a comprehensive updated review. Prog Cardiovasc Dis. 2019;62:315–26.

    Article  PubMed  Google Scholar 

  114. Da SJ, Goncalves R, Vasques JF, Rocha BS, Nascimento-Carlos B, Montagnoli TL, et al. Mesenchymal stem cell therapy in diabetic cardiomyopathy. Cells. 2022;11:240.

    Article  Google Scholar 

  115. Gao Y, Liu W, Su X, Li X, Yu F, Zhang N. The beneficial effects of chinese herbal monomers on ameliorating diabetic cardiomyopathy via Nrf2 signaling. Oxid Med Cell Longev. 2022;2022:3959390.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yan M, Li L, Wang Q, Shao X, Luo Q, Liu S, et al. The Chinese herbal medicine Fufang Zhenzhu Tiaozhi protects against diabetic cardiomyopathy by alleviating cardiac lipotoxicity-induced oxidative stress and NLRP3-dependent inflammasome activation. Biomed Pharmacother. 2022;148:112709.

    Article  CAS  PubMed  Google Scholar 

  117. Peng M, **a T, Zhong Y, Zhao M, Yue Y, Liang L, et al. Integrative pharmacology reveals the mechanisms of Erzhi Pill, a traditional Chinese formulation, against diabetic cardiomyopathy. J Ethnopharmacol. 2022;296:115474.

    Article  CAS  PubMed  Google Scholar 

  118. Li L, Chen X, Su C, Wang Q, Li R, Jiao W, et al. Si-Miao-Yong-An decoction preserves cardiac function and regulates GLC/AMPK/NF-kappaB and GLC/PPARalpha/PGC-1alpha pathways in diabetic mice. Biomed Pharmacother. 2020;132:110817.

    Article  CAS  PubMed  Google Scholar 

  119. Wen C, Liu C, Li Y, **a T, Zhang X, Xue S, et al. Ameliorative potentials of the ethanolic extract from Lycium chinense leaf extract against diabetic cardiomyopathy. Insight into oxido-inflammatory and apoptosis modulation. Biomed Pharmacother. 2022;154:113583.

    Article  CAS  PubMed  Google Scholar 

  120. Zhang C, Zhang B, Zhang X, Wang M, Sun X, Sun G. Panax notoginseng saponin protects against diabetic cardiomyopathy through lipid metabolism modulation. J Am Heart Assoc. 2022;11:e23540.

    Article  Google Scholar 

  121. Zhang B, Zhang J, Zhang C, Zhang X, Ye J, Kuang S, et al. Notoginsenoside R1 protects against diabetic cardiomyopathy through activating estrogen receptor alpha and its downstream signaling. Front Pharmacol. 2018;9:1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Verboven M, Deluyker D, Ferferieva V, Lambrichts I, Hansen D, Eijnde BO, et al. Western diet given to healthy rats mimics the human phenotype of diabetic cardiomyopathy. J Nutr Biochem. 2018;61:140–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the China Postdoctoral Science Foundation (No. 2022M722892 and No. 2022M722901), the Key R&D and promotion Special Project of Henan Province (No. 232102311171), the National Natural Science Foundation of China Young Scientists Project (No. 82200796), and the Henan Province Medical Science and Technology Research Plan Joint Project (No. LHGJ20220289 and No. LHGJ20200364).

Author information

Authors and Affiliations

Authors

Contributions

**-Ling Huo and Qi Feng conceptualized the ideas and drafted and wrote the original manuscript. Wenjia Fu, Shaokang Pan, Zhangsuo Liu and Zhenzhen Liu revised the manuscript. All authors reviewed the manuscript and approved the final version of the manuscript for submission.

Corresponding authors

Correspondence to Zhangsuo Liu or Zhenzhen Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, JL., Feng, Q., Pan, S. et al. Diabetic cardiomyopathy: Early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions. Cell Death Discov. 9, 256 (2023). https://doi.org/10.1038/s41420-023-01553-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41420-023-01553-4

  • Springer Nature Limited