Log in

Human adipose-derived stem cells genetically programmed to induce necroptosis for cancer immunotherapy

  • Article
  • Published:
Cancer Gene Therapy Submit manuscript

Abstracts

Herein, we present human adipose-derived stem cells (ADSCs) inserted with the receptor-interacting protein kinase-3 (RIP3) gene (RP@ADSCs), which induces cell necroptosis, for tumor immunotherapy. Necroptosis has characteristics of both apoptosis, such as programmed cell death, and necrosis, such as swelling and plasma membrane rupture, during which damage-related molecular patterns are released, triggering an immune response. Therefore, necroptosis has the potential to be used as an effective anticancer immunotherapy. RP@ADSCs were programmed to necroptosis after a particular time after being injected in vivo, and various pro-inflammatory cytokines secreted during the stem cell death process stimulated the immune system, showing local and sustained anticancer effects. It was confirmed that RIP3 protein expression increased in ADSCs after RP transfection. RP@ADSCs continued to induce ADSCs death for 7 days, and various pro-inflammatory cytokines were secreted through ADSCs death. The efficacy of RP@ADSCs-mediated immunotherapy was evaluated in mouse models bearing GL-26 (glioblastoma) and K1735 (melanoma), and it was found that RP resulted in an increase in the population of long-term cytotoxic T cells and a decrease in the population of regulatory T cells. This shows that RP@ADSCs have potential and applicability as an excellent anticancer immunotherapy agent in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1: Preparation and characterization of RP.
Fig. 2: In vitro gene transfection effect after treated with RP in ADSC.
Fig. 3: Analyses of RNA-seq in ADSCs and RP@ADSCs.
Fig. 4: Cancer-homing effect of RP@ADSC into K1735 tumor-bearing Balb/c mice.
Fig. 5: In vivo anticancer activity of RP@ADSC with K1735 tumor-bearing Balb/c mice.
Fig. 6: In vivo anticancer activity of RP@ADSCs with GL-26 tumor-bearing Balb/c nu/nu mice.
Fig. 7: In vivo toxicity evaluation.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev. 2015;82:1–11.

    Article  PubMed  Google Scholar 

  2. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41–9.

    Article  CAS  PubMed  Google Scholar 

  3. Han J, Hwang HS, Na K. TRAIL-secreting human mesenchymal stem cells engineered by a non-viral vector and photochemical internalization for pancreatic cancer gene therapy. Biomaterials. 2018;182:259–68.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang C-L, Huang T, Wu B-L, He W-X, Liu D. Stem cells in cancer therapy: opportunities and challenges. Oncotarget. 2017;8:75756.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739–49.

    Article  CAS  PubMed  Google Scholar 

  6. Sagar J, Chaib B, Sales K, Winslet M, Seifalian A. Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell Int. 2007;7:1–11.

    Article  Google Scholar 

  7. Alvites R, Branquinho M, Sousa AC, Lopes B, Sousa P, Maurício AC. Mesenchymal stem/stromal cells and their paracrine activity—immunomodulation mechanisms and how to influence the therapeutic potential. Pharmaceutics. 2022;14:381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharm Sci. 2020;41:653–64.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou Y, Yamamoto Y, **ao Z, Ochiya T. The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. J Clin Med. 2019;8:1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park N, Kim KS, Na K. Stem cell-derived paracrine factors by modulated reactive oxygen species to enhance cancer immunotherapy. J Control Release. 2023;363:670–81.

    Article  CAS  PubMed  Google Scholar 

  11. **ao M, Tang Q, Zeng S, Yang Q, Yang X, Tong X, et al. Emerging biomaterials for tumor immunotherapy. Biomater Res. 2023;27:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liesveld JL, Sharma N, Aljitawi OS. Stem cell homing: from physiology to therapeutics. Stem Cells. 2020;38:1241–53.

    Article  PubMed  Google Scholar 

  13. Karp JM, Teo GSL. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4:206–16.

    Article  CAS  PubMed  Google Scholar 

  14. Quesenberry PJ, Becker PS. Stem cell homing: rolling, crawling, and nesting. Proc Natl Acad Sci USA 1998;95:15155–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hocking AM. The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care. 2015;4:623–30.

    Article  Google Scholar 

  16. Serakinci N, Guldberg P, Burns JS, Abdallah B, Schrødder H, Jensen T, et al. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene. 2004;23:5095–8.

    Article  CAS  PubMed  Google Scholar 

  17. Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells. 2006;24:1095–103.

    Article  PubMed  Google Scholar 

  18. Tang C, Ang BT, Pervaiz S. Cancer stem cell: target for anti‐cancer therapy. FASEB J. 2007;21:3777–85.

    Article  CAS  PubMed  Google Scholar 

  19. Finlan L, Hupp T. Epidermal stem cells and cancer stem cells: insights into cancer and potential therapeutic strategies. Eur J Cancer. 2006;42:1283–92.

    Article  CAS  PubMed  Google Scholar 

  20. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev. 2004;14:43–7.

    Article  CAS  PubMed  Google Scholar 

  21. Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol/Hematol. 2004;51:1–28.

    Article  PubMed  Google Scholar 

  22. de Almagro MC, Vucic D. Necroptosis: pathway diversity and characteristics. Semin Cell Dev Biol. 2015;39:56–62.

    Article  PubMed  Google Scholar 

  23. Newton K, Manning G. Necroptosis and inflammation. Annu Rev Biochem. 2016;85:743–63.

    Article  CAS  PubMed  Google Scholar 

  24. Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol. 2017;17:151–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ros U, Peña-Blanco A, Hänggi K, Kunzendorf U, Krautwald S, Wong WW-L, et al. Necroptosis execution is mediated by plasma membrane nanopores independent of calcium. Cell Rep. 2017;19:175–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Choi ME, Price DR, Ryter SW, Choi AM. Necroptosis: a crucial pathogenic mediator of human disease. JCI insight. 2019;4:15.

    Article  Google Scholar 

  27. Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15:135–47.

    Article  Google Scholar 

  28. Zhou H, Liu L, Ma X, Wang J, Yang J, Zhou X, et al. RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage. Mol Cell Biochem. 2021;476:1233–43.

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, et al. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy. Int J Mol Med. 2019;44:771–86.

    PubMed  PubMed Central  Google Scholar 

  30. Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, et al. The role of necroptosis in cancer biology and therapy. Mol Cancer. 2019;18:1–17.

    Article  CAS  Google Scholar 

  31. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148:213–27.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA. 2012;109:5322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang J-G, Alvarez-Diaz S, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 2013;39:443–53.

    Article  CAS  PubMed  Google Scholar 

  34. Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014;7:971–81.

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez D, Weinlich R, Brown S, Guy C, Fitzgerald P, Dillon C, et al. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ. 2016;23:76–88.

    Article  CAS  PubMed  Google Scholar 

  36. Wang K-j WangK-y, Zhang H-z MengX-y, Chen J-f WangP, et al. Up-regulation of RIP3 alleviates prostate cancer progression by activation of RIP3/MLKL signaling pathway and induction of necroptosis. Front Oncol. 2020;10:1720.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Silke J, Rickard JA, Gerlic M. The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol. 2015;16:689–97.

    Article  CAS  PubMed  Google Scholar 

  38. Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013;38:209–23.

    Article  CAS  PubMed  Google Scholar 

  39. Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis. 2021;26:152–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal. 2010;3:re4–re4.

    Article  PubMed  Google Scholar 

  41. Schmidt SV, Seibert S, Walch-Rückheim B, Vicinus B, Kamionka E-M, Pahne-Zeppenfeld J, et al. RIPK3 expression in cervical cancer cells is required for PolyIC-induced necroptosis, IL-1α release, and efficient paracrine dendritic cell activation. Oncotarget. 2015;6:8635.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen D, Yu J, Zhang L. Necroptosis: an alternative cell death program defending against cancer. Biochim Biophys Acta-Rev Cancer. 2016;1865:228–36.

    Article  CAS  Google Scholar 

  43. Wang R, Li H, Wu J, Cai Z-Y, Li B, Ni H, et al. Gut stem cell necroptosis by genome instability triggers bowel inflammation. Nature. 2020;580:386–90.

    Article  CAS  PubMed  Google Scholar 

  44. Hu X-M, Zhang Q, Zhou R-X, Wu Y-L, Li Z-X, Zhang D-Y, et al. Programmed cell death in stem cell-based therapy: Mechanisms and clinical applications. World J Stem Cells. 2021;13:386.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hamann A, Nguyen A, Pannier AK. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications. J Biol Eng. 2019;13:1–16.

    Article  Google Scholar 

  46. Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther. 2019;20:1366–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Franklin C, Livingstone E, Roesch A, Schilling B, Schadendorf D. Immunotherapy in melanoma: recent advances and future directions. Eur J Surg Oncol. 2017;43:604–11.

    Article  CAS  PubMed  Google Scholar 

  48. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: state of the art and future directions. CA: Cancer J Clin. 2020;70:299–312.

    PubMed  Google Scholar 

  49. Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current challenges and opportunities in treating glioblastoma. Pharm Rev. 2018;70:412–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, et al. Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol. 2019;10:168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Duan Q, Zhang H, Zheng J, Zhang L. Turning cold into hot: firing up the tumor microenvironment. Trends Cancer. 2020;6:605–18.

    Article  CAS  PubMed  Google Scholar 

  52. Frederico SC, Hancock JC, Brettschneider EE, Ratnam NM, Gilbert MR, Terabe M. Making a cold tumor hot: the role of vaccines in the treatment of glioblastoma. Front Oncol. 2021;11:672508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Giacca M, Zacchigna S. Virus-mediated gene delivery for human gene therapy. J Control Release. 2012;161:377–88.

    Article  CAS  PubMed  Google Scholar 

  54. Nakai H, Storm TA, Kay MA. Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat Biotechnol. 2000;18:527–32.

    Article  CAS  PubMed  Google Scholar 

  55. Sun L, Li J, **ao X. Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med. 2000;6:599–602.

    Article  CAS  PubMed  Google Scholar 

  56. Ramamoorth M, Narvekar A. Non viral vectors in gene therapy-an overview. J Clin Diagn Res. 2015;9:GE01–GE06.

    PubMed  PubMed Central  Google Scholar 

  57. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke E, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16:3–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program (NRF-2022R1A2B5B03001432) of the National Research Foundation of Korea which is funded by the Ministry of Science and ICT (MSIT).

Author information

Authors and Affiliations

Authors

Contributions

S. Bak contributed to the investigation, methodology, formal analysis, and writing—original and revised draft. K.S. Kim contributed to the methodology, formal analysis, and writing—original and revised draft. K. Na contributed to the conceptualization, project administration, supervision, funding acquisition, and writing—revised draft.

Corresponding author

Correspondence to Kun Na.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The Institutional Animal Care and Use Committee of the Catholic University of Korea granted approval for all animal experiments.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bak, S., Kim, K.S. & Na, K. Human adipose-derived stem cells genetically programmed to induce necroptosis for cancer immunotherapy. Cancer Gene Ther (2024). https://doi.org/10.1038/s41417-024-00794-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-024-00794-4

  • Springer Nature America, Inc.

Navigation