Log in

Isotoosendanin inhibits triple-negative breast cancer metastasis by reducing mitochondrial fission and lamellipodia formation regulated by the Smad2/3-GOT2-MYH9 signaling axis

  • Article
  • Published:
Acta Pharmacologica Sinica Submit manuscript

Abstract

Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFβR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFβR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-β-Smad2/3 signaling pathway through directly binding to TGFβR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1: ITSN decreased the expression of GOT2 that is a downstream gene regulated by Smad2/3.
Fig. 2: GOT2 overexpression markedly reversed the anti-metastatic effect of ITSN.
Fig. 3: GOT2 could directly interact with MYH9.
Fig. 4: The GOT2-mediated promotion of TNBC metastasis was dependent on MYH9.
Fig. 5: GOT2 reduced MYH9 protein degradation.
Fig. 6: GOT2 reduced MYH9 protein degradation by interfering with the binding of MYH9 to STUB1.
Fig. 7: GOT2 recruited MYH9 to mitochondria to promote mitochondrial fission and lamellipodia formation.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  3. Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389:1134–50.

    Article  PubMed  Google Scholar 

  4. Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subty** and treatment progress. Breast Cancer Res. 2020;22:61.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kassam F, Enright K, Dent R, Dranitsaris G, Myers J, Flynn C, et al. Survival outcomes for patients with metastatic triple-negative breast cancer: implications for clinical practice and trial design. Clin Breast Cancer. 2009;9:29–33.

    Article  PubMed  Google Scholar 

  6. Won KA, Spruck C. Triple-negative breast cancer therapy: current and future perspectives (Review). Int J Oncol. 2020;57:1245–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yin Y, Yan YP, Fan B, Huang WP, Zhang J, Hu HY, et al. Novel combination therapy for triple-negative breast cancer based on an intelligent hollow carbon sphere. Res (Wash D C). 2023;6:0098.

    CAS  Google Scholar 

  8. Zhao WS, Chen KF, Liu M, Jia XL, Huang YQ, Hao BB, et al. Investigation of targets and anticancer mechanisms of covalently acting natural products by functional proteomics. Acta Pharmacol Sin. 2023;44:1701–11.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang JN, Zhang Z, Huang ZL, Li ML, Yang F, Wu ZQ, et al. Isotoosendanin exerts inhibition on triple-negative breast cancer through abrogating TGF-β-induced EMT via directly targeting TGFβR1. Acta Pharm Sin B. 2023;13:2990–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T, Okumura K. Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer. 2001;91:964–71.

    Article  CAS  PubMed  Google Scholar 

  11. Watabe T, Takahashi K, Pietras K, Yoshimatsu Y. Roles of TGF-β signals in tumor microenvironment via regulation of the formation and plasticity of vascular system. Semin Cancer Biol. 2023;92:130–8.

    Article  CAS  PubMed  Google Scholar 

  12. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–72.

    Article  CAS  PubMed  Google Scholar 

  13. Chapman VM, Ruddle FH. Glutamate oxaloacetate transaminase (got) genetics in the mouse: polymorphism of got-1. Genetics. 1972;70:299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hong RX, Zhang WM, **a X, Zhang K, Wang Y, Wu MJ, et al. Preventing BRCA1/ZBRK1 repressor complex binding to the GOT2 promoter results in accelerated aspartate biosynthesis and promotion of cell proliferation. Mol Oncol. 2019;13:959–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Du F, Chen J, Liu H, Cai YH, Cao TY, Han WL, et al. SOX12 promotes colorectal cancer cell proliferation and metastasis by regulating asparagine synthesis. Cell Death Dis. 2019;10:239.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li YZ, Li BH, Xu YC, Qian LY, Xu TC, Meng G, et al. GOT2 silencing promotes reprogramming of glutamine metabolism and sensitizes hepatocellular carcinoma to glutaminase inhibitors. Cancer Res. 2022;82:3223–35.

    Article  CAS  PubMed  Google Scholar 

  17. Nwosu ZC, Pasca di Magliano M. GOT2: an unexpected mediator of immunosuppression in pancreatic cancer. Cancer Discov. 2022;12:2237–39.

    Article  CAS  PubMed  Google Scholar 

  18. Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell. 2016;166:555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sabouny R, Shutt TE. Reciprocal regulation of mitochondrial fission and fusion. Trends Biochem Sci. 2020;45:564–77.

    Article  CAS  PubMed  Google Scholar 

  20. Senft D, Ronai ZA. Regulators of mitochondrial dynamics in cancer. Curr Opin Cell Biol. 2016;39:43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21:204–24.

    Article  CAS  PubMed  Google Scholar 

  22. Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL, et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell. 2015;57:537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Serasinghe MN, Wieder SY, Renault TT, Elkholi R, Asciolla JJ, Yao JL, et al. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol Cell. 2015;57:521–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Civenni G, Bosotti R, Timpanaro A, Vàzquez R, Merulla J, Pandit S, et al. Epigenetic control of mitochondrial fission enables self-renewal of stem-like tumor cells in human prostate cancer. Cell Metab. 2019;30:303–18.

    Article  CAS  PubMed  Google Scholar 

  25. **e C, Wang FY, Sang Y, Chen B, Huang JH, He FJ, et al. Mitochondrial micropeptide STMP1 enhances mitochondrial fission to promote tumor metastasis. Cancer Res. 2022;82:2431–43.

    Article  CAS  PubMed  Google Scholar 

  26. Mei XY, Zhang JN, Jia WY, Lu B, Wang MN, Zhang TY, et al. Scutellarin suppresses triple-negative breast cancer metastasis by inhibiting TNFα-induced vascular endothelial barrier breakdown. Acta Pharmacol Sin. 2022;43:2666–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhong Y, Long T, Gu CS, Tang JY, Gao LF, Zhu JX, et al. MYH9-dependent polarization of ATG9B promotes colorectal cancer metastasis by accelerating focal adhesion assembly. Cell Death Differ. 2021;28:3251–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang S, Hwang S, Kim M, Seo SB, Lee JH, Jeong SM. Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis. 2018;9:55.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li FP, Shi JL, Xu ZJ, Yao XX, Mou TY, Yu J, et al. S100A4-MYH9 axis promote migration and invasion of gastric cancer cells by inducing TGF-β-mediated epithelial-mesenchymal transition. J Cancer. 2018;9:3839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liao Q, Li R, Zhou R, Pan ZH, Xu LJ, Ding YQ, et al. LIM kinase 1 interacts with myosin-9 and alpha-actinin-4 and promotes colorectal cancer progression. Br J Cancer 2017;117:563–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li YM, Wang ZK, Su P, Liang YR, Li Z, Zhang HW, et al. circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol Ther. 2022;30:415–30.

    Article  PubMed  Google Scholar 

  32. Yapa NMB, Lisnyak V, Reljic B, Ryan MT. Mitochondrial dynamics in health and disease. FEBS Lett. 2021;595:1184–204.

    Article  CAS  PubMed  Google Scholar 

  33. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337:1062–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eisner V, Picard M, Hajnóczky G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol. 2018;20:755–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boulton DP, Caino MC. Mitochondrial fission and fusion in tumor progression to metastasis. Front Cell Dev Biol. 2022;10:849962.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhao J, Zhang J, Yu M, **e Y, Huang Y, Wolff DW, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 2013;32:4814–24.

    Article  CAS  PubMed  Google Scholar 

  37. Yu Y, Peng XD, Qian XJ, Zhang KM, Huang X, Chen YH, et al. Fis1 phosphorylation by Met promotes mitochondrial fission and hepatocellular carcinoma metastasis. Signal Transduct Target Ther. 2021;6:401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu D, Yang Y, Hou Y, Zhao Z, Liang N, Yuan P, et al. Increased mitochondrial fission drives the reprogramming of fatty acid metabolism in hepatocellular carcinoma cells through suppression of Sirtuin 1. Cancer Commun. 2022;42:37–55.

    Article  CAS  Google Scholar 

  39. Gao T, Zhang X, Zhao J, Zhou F, Wang Y, Zhao Z, et al. SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer. Cancer Lett. 2020;469:89–101.

    Article  CAS  PubMed  Google Scholar 

  40. Williams M, Caino MC. Mitochondrial dynamics in type 2 diabetes and cancer. Front Endocrinol. 2018;9:211.

    Article  Google Scholar 

  41. Sun XC, Cao HY, Zhan L, Yin C, Wang G, Liang P, et al. Mitochondrial fission promotes cell migration by Ca2+/CaMKII/ERK/FAK pathway in hepatocellular carcinoma. Liver Int. 2018;38:1263–72.

    Article  CAS  PubMed  Google Scholar 

  42. Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol. 2009;10:445–57.

    Article  CAS  PubMed  Google Scholar 

  43. Ridley AJ. Life at the leading edge. Cell. 2011;145:1012–22.

    Article  CAS  PubMed  Google Scholar 

  44. Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Dev Biol. 2004;265:23–32.

    Article  CAS  PubMed  Google Scholar 

  45. Krause M, Gautreau A. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol. 2014;15:577–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank KangChen Bio-tech (China) for providing assistance with RNA sequencing. This work was financially supported by the “Young Qihuang Scholar” for Li-li Ji, National Natural Science Foundation of China (82273994), Program of Shanghai Academic Research Leader (23XD1404000) and the Organizational Key Research and Development Program of Shanghai University of Traditional Chinese Medicine (2023YZZ02).

Author information

Authors and Affiliations

Authors

Contributions

LLJ and JNZ conceived and designed the study. LLJ supervised the study. JNZ and ZZ performed most of the experiments. ZLH, QG, ZQW, CK, and BL assisted in a subset of the experiments and helped with the data analysis. JNZ wrote the manuscript. LLJ and ZTW revised the manuscript. All of the authors contributed to this work and approved the final draft.

Corresponding author

Correspondence to Li-li Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jn., Zhang, Z., Huang, Zl. et al. Isotoosendanin inhibits triple-negative breast cancer metastasis by reducing mitochondrial fission and lamellipodia formation regulated by the Smad2/3-GOT2-MYH9 signaling axis. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01335-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01335-3

  • Springer Nature Singapore Pte Ltd.

Keywords

Navigation