Log in

Effect of hypoxia on aquaporins and hepatobiliary transport systems in human hepatic cells

  • Basic Science Article
  • Published:
Pediatric Research Submit manuscript

Abstract

Objectives

Hepatic ischemia and hypoxia are accompanied by reduced bile flow, biliary sludge and cholestasis. Hepatobiliary transport systems, nuclear receptors and aquaporins were studied after hypoxia and reoxygenation in human hepatic cells.

Methods

Expression of Aquaporin 8 (AQP8), Aquaporin 9 (AQP9), Pregnane X receptor (PXR), Farnesoid X receptor (FXR), Organic anion transporting polypeptide 1 (OATP1), and the Multidrug resistance-associated protein 4 (MRP4) were investigated in induced pluripotent stem cells (iPSCs) derived hepatic cells and the immortalized hepatic line HepG2. HepG2 was subjected to combined oxygen and glucose deprivation for 4 h followed by reoxygenation.

Results

Expression of AQP8 and AQP9 increased during differentiation in iPSC-derived hepatic cells. Hypoxia did not alter mRNA levels of AQP8, but reoxygenation caused a marked increase in AQP8 mRNA expression. While expression of OATP1 had a transient increase during reoxygenation, MRP4 showed a delayed downregulation. Knock-down of FXR did not alter the expression of AQP8, AQP9, MRP4, or OATP1. Post-hypoxic protein levels of AQP8 were reduced after 68 h of reoxygenation compared to normoxic controls.

Conclusions

Post-transcriptional mechanisms rather than reduced transcription cause reduction in AQP8 protein concentration after hypoxia-reoxygenation in hepatic cells. Expression patterns differed between hepatobiliary transport systems during hypoxia and reoxygenation.

Impact

  • Expression of AQP8 and AQP9 increased during differentiation in induced pluripotent stem cells.

  • Expression of hepatobiliary transporters varies during hypoxia and reoxygenation.

  • Post-hypoxic protein levels of AQP8 were reduced after 68 h of reoxygenation.

  • Post-transcriptional mechanisms rather than reduced transcription cause reduction in AQP8 protein concentration after hypoxia-reoxygenation in hepatic cells.

  • Hypoxia and reoxygenation may affect aquaporins in hepatic cells and potentially affect bile composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Expression of aquaporins and hepatobiliary transporters during differentiation.
Fig. 2: Metabolic activity assessed with the MTT assay after 4 h of hypoxia followed by 20 (n = 5), 44 (n = 6) or 68 h (n = 6) of reoxygenation.
Fig. 3: mRNA expression of AQP8, AQP9, PXR, FXR, MRP4 and OATP1 measured with quantitative PCR against endogenous control GAPDH.
Fig. 4: mRNA expression of AQP8, AQP9, FXR, MRP4 and PXR in transfected cells.
Fig. 5: AQP8 proteins levels after hypoxia and rexygenation.

Similar content being viewed by others

References

  1. Fouassier, L. et al. Hypoxia-induced changes in the expression of rat hepatobiliary transporter genes. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G25–G35 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Keizman, D., Ish-Shalom, M. & Konikoff, F. M. The clinical significance of bile duct sludge: is it different from bile duct stones? Surg. Endosc. 21, 769–773 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Konno, H., Hardison, W. G. & Miyai, K. Reoxygenation injury following anoxic perfusion preferentially impairs bile acid-independent bile flow. Eur. Surg. Res. 23, 151–157 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Fu**o, T. et al. Hypoxia downregulates farnesoid X receptor via a hypoxia-inducible factor-independent but p38 mitogen-activated protein kinase-dependent pathway. FEBS J. 276, 1319–1332 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Schaffner, C. A. et al. The organic solute transporters alpha and beta are induced by hypoxia in human hepatocytes. Liver Int. 35, 1152–1161 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Larocca, M. C., Soria, L. R., Espelt, M. V., Lehmann, G. L. & Marinelli, R. A. Knockdown of hepatocyte aquaporin-8 by RNA interference induces defective bile canalicular water transport. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G93–G100 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Elkjaer, M. et al. Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem. Biophys. Res. Commun. 276, 1118–1128 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Bienert, G. P. et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282, 1183–1192 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Ma, T., Yang, B. & Verkman, A. S. Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart. Biochem. Biophys. Res. Commun. 240, 324–328 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Vieceli Dalla Sega, F. et al. Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells. Biochim. Biophys. Acta 1843, 806–814 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Marchissio, M. J., Francés, D. E., Carnovale, C. E. & Marinelli, R. A. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability. Toxicol. Appl Pharm. 264, 246–254 (2012).

    Article  CAS  Google Scholar 

  12. Huebert, R. C., Splinter, P. L., Garcia, F., Marinelli, R. A. & LaRusso, N. F. Expression and localization of aquaporin water channels in rat hepatocytes. Evidence for a role in canalicular bile secretion. J. Biol. Chem. 277, 22710–22717 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Carreras, F. I. et al. Defective hepatocyte aquaporin-8 expression and reduced canalicular membrane water permeability in estrogen-induced cholestasis. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G905–G912 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Lehmann, G. L., Carreras, F. I., Soria, L. R., Gradilone, S. A. & Marinelli, R. A. LPS induces the TNF-alpha-mediated downregulation of rat liver aquaporin-8: role in sepsis-associated cholestasis. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G567–G575 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Asai, Y. et al. Activation of the hypoxia inducible factor 1alpha subunit pathway in steatotic liver contributes to formation of cholesterol gallstones. Gastroenterol 152, 1521–1535.e8 (2017).

    Article  CAS  Google Scholar 

  16. Karimi, S., Khatami, S. R., Azarpira, N., Galehdari, H. & Pakbaz, S. Investigate of AQP gene expression in the liver of mice after ischemia –reperfusion. Mol. Biol. Rep. 45, 1769–1774 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Setchell, K. D. et al. Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. Gastroenterology 112, 226–235 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Fattinger, K. et al. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin. Pharmacol. Ther. 69, 223–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Leslie, E. M., Watkins, P. B., Kim, R. B. & Brouwer, K. L. Differential inhibition of rat and human Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) by bosentan: a mechanism for species differences in hepatotoxicity. J. Pharmacol. Exp. Ther. 321, 1170–1178 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Pisal, R. V. et al. Directed reprogramming of comprehensively characterized dental pulp stem cells extracted from natal tooth. Sci. Rep. 8, 6168 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Siller, R., Greenhough, S., Naumovska, E. & Sullivan, G. J. Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells. Stem Cell Rep. 4, 939–952 (2015).

    Article  CAS  Google Scholar 

  22. Siller, R. et al. Development of a rapid screen for the endodermal differentiation potential of human pluripotent stem cell lines. Sci. Rep. 6, 37178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mathapati, S. et al. Small-molecule-directed hepatocyte-like cell differentiation of human pluripotent stem cells. Curr. Protoc. Stem. Cell. Biol. 38, 1G.6.1–1G.6.18 (2016).

    Article  PubMed  Google Scholar 

  24. Almaas, R., Saugstad, O. D., Pleasure, D. & Rootwelt, T. Effect of barbiturates on hydroxyl radicals, lipid peroxidation, and hypoxic cell death in human NT2-N neurons. Anesthesiol 92, 764–774 (2000).

    Article  CAS  Google Scholar 

  25. Rootwelt, T. et al. Hypoxic cell death in human NT2-N neurons: involvement of NMDA and non-NMDA glutamate receptors. J. Neurochem 71, 1544–1553 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Almaas, R., Saugstad, O. D., Pleasure, D. & Rootwelt, T. Neuronal formation of free radicals plays a minor role in hypoxic cell death in human NT2-N neurons. Pediatr. Res. 51, 136–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Ferri, D. et al. Ontogeny, distribution, and possible functional implications of an unusual aquaporin, AQP8, in mouse liver. Hepatology 38, 947–957 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Suh, H. N. et al. High glucose induced translocation of Aquaporin8 to chicken hepatocyte plasma membrane: involvement of cAMP, PI3K/Akt, PKC, MAPKs, and microtubule. J. Cell. Biochem. 103, 1089–1100 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Carreras, F. I. et al. Rat hepatocyte aquaporin-8 water channels are down-regulated in extrahepatic cholestasis. Hepatology 37, 1026–1033 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell. 3, 543–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Legendre, C. et al. Drug-metabolising enzymes are down-regulated by hypoxia in differentiated human hepatoma HepaRG cells: HIF-1alpha involvement in CYP3A4 repression. Eur. J. Cancer 45, 2882–2892 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Vajro, P. et al. Cholestasis in newborn infants with perinatal asphyxia. Acta Paediatr. 86, 895–898 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Beath, S. V. Hepatic function and physiology in the newborn. Semin. Neonatol. 8, 337–346 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Herzog, D., Chessex, P., Martin, S. & Alvarez, F. Transient cholestasis in newborn infants with perinatal asphyxia. Can. J. Gastroenterol. 17, 179–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Jacquemin, E., Saliba, E., Blond, M. H., Chantepie, A. & Laugier, J. Liver dysfunction and acute cardiocirculatory failure in children. Eur. J. Pediatr. 151, 731–734 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Kamiike, W. et al. Correlation between cellular ATP level and bile excretion in the rat liver. Transplant 39, 50–55 (1985).

    Article  CAS  Google Scholar 

  37. Nakatani, T., Sakamoto, Y., Ando, H. & Kobayashi, K. Bile and bilirubin excretion in relation to hepatic energy status during hemorrhagic shock and hypoxemia in rabbits. J. Trauma 39, 665–670 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Jacquemin, E., Lykavieris, P., Chaoui, N., Hadchouel, M. & Bernard, O. J. Transient neonatal cholestasis: origin and outcome. Pediatr 133, 563–567 (1998).

    Article  CAS  Google Scholar 

  39. Hermeziu, B. et al. Heterozygous bile salt export pump deficiency: a possible genetic predisposition to transient neonatal cholestasis. J. Pediatr. Gastroenterol. Nutr. 42, 114–116 (2006).

    Article  PubMed  Google Scholar 

  40. Jacquemin, E. et al. Heterozygous FIC1 deficiency: a new genetic predisposition to transient neonatal cholestasis. J. Pediatr. Gastroenterol. Nutr. 50, 447–449 (2010).

    Article  PubMed  Google Scholar 

  41. Marrone, J. et al. Adenoviral transfer of human aquaporin-1 gene to rat liver improves bile flow in estrogen-induced cholestasis. Gene Ther. 21, 1058–1064 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Marrone, J., Danielli, M., Gaspari, C. I. & Marinelli, R. A. Adenovirus-mediated human aquaporin-1 expression in hepatocytes improves lipopolysaccharide-induced cholestasis. IUBMB Life. 69, 978–984 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. **ong, X. et al. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation. Biomed. Pharmacother. 96, 1292–1298 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. El Kasmi, K. C. et al. Pharmacologic activation of hepatic farnesoid X receptor prevents parenteral nutrition-associated cholestasis in mice. Hepatology 75, 252–265 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

N.S.W. has received financial support from University of Oslo. Runar Almaas has received financial support from The Eckbo Foundation.

Author information

Authors and Affiliations

Authors

Contributions

N.S.W. participated in conceptualization and design of the study, acquisition and analysis of data, drafted the initial manuscript, and revised the manuscript. M.A-Å., M.M., M.E.C., S.P.H, R.S. participated in acquisition of data, reviewed and revised the manuscript. G.J.C participated in design of the study, analysis of data, reviewed and revised the manuscript. R.A. participated in conceptualization and design of the study, analysis of data, writing and revision of the manuscript. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Runar Almaas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westerberg, N.S., Atneosen-Åsegg, M., Melheim, M. et al. Effect of hypoxia on aquaporins and hepatobiliary transport systems in human hepatic cells. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03368-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03368-0

  • Springer Nature America, Inc.

Navigation