Log in

Timing, velocity, and magnitude of pubertal changes in body composition: a longitudinal study

  • Clinical Research Article
  • Published:
Pediatric Research Submit manuscript

Abstract

Background

Pubertal changes in body composition significantly influence future health, with links to various diseases. This study aimed to evaluate the weight changes, fat-free mass (FFM), and body fat mass (BFM) during pubertal growth in Korean children and adolescents.

Methods

We utilized mixed longitudinal data, employing bioelectrical impedance analysis for 4641 height measurements (2204 boys, 2437 girls) from 361 individuals (170 boys, 191 girls) aged 7–18 years. Utilizing the Superimposition by Translation and Rotation (SITAR) model, a shape-invariant growth curve model, reference curves for height, weight, and body composition change velocities were estimated.

Results

Korean boys experience peak weight velocity (PWV) at an average age of 12.41 years, with a rate of 8.19 kg/year, peak fat-free mass velocity (PFFV) at 12.70 years (7.60 kg/year), and peak body fat mass velocity (PBFV) at 9.69 years (2.67 kg/year). Korean girls show PWV at 11.28 years (6.33 kg/year), PFFV at 11.13 years (4.86 kg/year), and PBFV at 12.33 years (2.72 kg/year). Positive correlations exist among the ages of peak height velocity, PWV, PFFV, and PBFV.

Conclusions

This research represents the groundbreaking application of the SITAR model in analyzing changes in body composition during pubertal growth in Korean children and adolescents.

Impact

  • This study utilized the SITAR model to analyze longitudinal changes in the body composition of the general pediatric population in Korea across pre- and post-pubertal stages, addressing overlooked aspects in cross-sectional studies.

  • Examining growth parameters, including size (mean mass), tempo (timing), and velocity (compression and expansion) for each body component, revealed positive correlations among ages at peak velocities for various body composition parameters.

  • This study can be employed for further investigations that compare the tempo, size, and velocity of various body composition parameters in pediatric disease cohorts and the general population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Growth curve of height, weight, FFM, and BFM with age by sex from the mean curves modeled using SITAR.
Fig. 2: Boxplots for APVs and PVs for height, weight, FFM, and BFM by sex-specific SITAR modeling.
Fig. 3: Mean differences in growth parameters (variables on y-axis subtitles) between samples in the top and bottom 20% (based on variables in subtitles).

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from The Global Prediction Co., Ltd. but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of The Global Prediction Co., Ltd.

References

  1. Lister, N. B. et al. Child and adolescent obesity. Nat. Rev. Dis. Prim. 9, 24 (2023).

    Article  PubMed  Google Scholar 

  2. Choi, K. M. Sarcopenia and sarcopenic obesity. Korean J. Intern. Med. 31, 1054–1060 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kyle, U. G., Schutz, Y., Dupertuis, Y. M. & Pichard, C. Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index. Nutrition 19, 597–604 (2003).

    Article  PubMed  Google Scholar 

  4. Córdoba-Rodríguez, D. P. et al. Fat-free/lean body mass in children with insulin resistance or metabolic syndrome: a systematic review and meta-analysis. BMC Pediatr. 22, 58 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xu, R., Zhang, X., Zhou, Y., Wan, Y. & Gao, X. Percentage of free fat mass is associated with elevated blood pressure in healthy Chinese children. Hypertens. Res. 42, 95–104 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Alberga, A. S., Sigal, R. J., Goldfield, G., Prud’ homme, D. & Kenny, G. P. Overweight and obese teenagers: why is adolescence a critical period? Pediatr. Obes. 7, 261–273 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, G. et al. Velocities of weight, height and fat mass gain during potentially critical periods of growth are decisive for adult body composition. Eur. J. Clin. Nutr. 69, 262–268 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Uauy, R., Kain, J. & Corvalan, C. How can the developmental origins of health and disease (DOHaD) hypothesis contribute to improving health in develo** countries? Am. J. Clin. Nutr. 94, 1759S–1764S (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Kyle, U. G., Earthman, C. P., Pichard, C. & Coss-Bu, J. A. Body composition during growth in children: limitations and perspectives of bioelectrical impedance analysis. Eur. J. Clin. Nutr. 69, 1298–1305 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Chula de Castro, J. A., Lima, T. R. & Silva, D. A. S. Body composition estimation in children and adolescents by bioelectrical impedance analysis: a systematic review. J. Bodyw. Mov. Ther. 22, 134–146 (2018).

    Article  PubMed  Google Scholar 

  11. Cole, T. J., Donaldson, M. D. & Ben-Shlomo, Y. SITAR—a useful instrument for growth curve analysis. Int. J. Epidemiol. 39, 1558–1566 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. McCarthy, A. et al. Birth weight; postnatal, infant, and childhood growth; and obesity in young adulthood: evidence from the Barry Caerphilly growth study. Am. J. Clin. Nutr. 86, 907–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Kuzawa, C. W. et al. Birth weight, postnatal weight gain, and adult body composition in five low and middle income countries. Am. J. Hum. Biol. 24, 5–13 (2012).

    Article  PubMed  Google Scholar 

  14. Dietz, W. H. Critical periods in childhood for the development of obesity. Am. J. Clin. Nutr. 59, 955–959 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Zheng, Y. et al. Association of body composition with pubertal timing in children and adolescents from Guangzhou, China. Front. Public Health 10, 943886 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen, Y. C. et al. Assessing causality between childhood adiposity and early puberty: a bidirectional Mendelian randomization and longitudinal study. Metabolism 100, 153961 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Nyati, L. H., Pettifor, J. M., Ong, K. K. & Norris, S. A. The association between the timing, intensity and magnitude of adolescent growth and body composition in early adulthood. Eur. J. Clin. Nutr. https://doi.org/10.1038/s41430-023-01293-9 (2023).

  18. Cheng, H. L. et al. The tempo and timing of puberty: associations with early adolescent weight gain and body composition over three years. Child Adolesc. Obes. 5, 16–27 (2022).

    Article  Google Scholar 

  19. Cole, T. J. et al. Using super-imposition by translation and rotation (SITAR) to relate pubertal growth to bone health in later life: the Medical Research Council (MRC) National Survey of Health and Development. Int. J. Epidemiol. 45, 1125–1134 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanner, J. M. & Whitehouse, R.H. Atlas of Children’s Growth (Academic Press, 1982).

  21. Cole, T. J. Tanner’s tempo of growth in adolescence: recent SITAR insights with the Harpenden Growth Study and ALSPAC. Ann. Hum. Biol. 47, 181–198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eckert-Lind, C. et al. Worldwide secular trends in age at pubertal onset assessed by breast development among girls: a systematic review and meta-analyzis. JAMA Pediatr. 174, e195881 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pierce, M. & Hardy, R. Commentary: the decreasing age of puberty—as much a psychosocial as biological problem? Int. J. Epidemiol. 41, 300–302 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gluckman, P. D. & Hanson, M. A. Changing times: the evolution of puberty. Mol. Cell. Endocrinol. 254, 26–31 (2006).

    Article  PubMed  Google Scholar 

  25. Cole, T. J. Secular trends in growth. Proc. Nutr. Soc. 59, 317–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kaplowitz, P. B. Link between body fat and the timing of puberty. Pediatrics 121, S208–216, (2008).

    Article  PubMed  Google Scholar 

  27. Aksglaede, L., Olsen, L. W., Sørensen, T. I. & Juul, A. Forty years trends in timing of pubertal growth spurt in 157,000 Danish school children. PLoS ONE 3, e2728 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ohlsson, C. et al. Secular trends in pubertal growth acceleration in Swedish boys born from 1947 to 1996. JAMA Pediatr. 173, 860–865, (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tanner, J. M. & Davies, P. S. Clinical longitudinal standards for height and height velocity for North American children. J. Pediatr. 107, 317–329 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Gerver, W. J. M. & De Bruin, R. Growth velocity: a presentation of reference values in Dutch children. Horm. Res. 60, 181–184, (2003).

    CAS  PubMed  Google Scholar 

  31. De Onis, M. et al. Comparison of the World Health Organization growth velocity standards with existing US reference data. Pediatrics 128, e18–26, (2011).

    Article  PubMed  Google Scholar 

  32. Wells, J. C. et al. Body-composition reference data for simple and reference techniques and a 4-component model: a new UK reference child. Am. J. Clin. Nutr. 96, 1316–1326 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Forte, G. C. et al. Can skinfold thickness equations be substituted for bioimpedance analysis in children? J. Pediatr. 97, 75–79 (2021).

  34. Ekelund, U. et al. Upward weight percentile crossing in infancy and early childhood independently predicts fat mass in young adults: the Stockholm weight development study (SWEDES). Am. J. Clin. Nutr. 83, 324–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Wasyluk, W., Wasyluk, M., Zwolak, A. & Łuczyk, R. J. Limits of body composition assessment by bioelectrical impedance analysis (BIA). J. Educ. Health Sport 9, 35–44 (2019).

    Google Scholar 

  36. Khalil, S. F., Mohktar, M. S. & Ibrahim, F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 14, 10895–10928 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Coppini, L. Z., Waitzberg, D. L. & Campos, A. C. Limitations and validation of bioelectrical impedance analysis in morbidly obese patients. Curr. Opin. Clin. Nutr. Metab. Care 8, 329–332 (2005).

    Article  PubMed  Google Scholar 

  38. Faria, S. L., Faria, O. P., Cardeal, M. D. & Ito, M. K. Validation study of multi-frequency bioelectrical impedance with dual-energy X-ray absorptiometry among obese patients. Obes. Surg. 24, 1476–1480 (2014).

    Article  PubMed  Google Scholar 

  39. Antonio, J. et al. Comparison of dual-energy X-ray absorptiometry (DXA) versus a multi-frequency bioelectrical impedance (InBody 770) device for body composition assessment after a 4-week hypoenergetic diet. J. Funct. Morphol. Kinesiol. 4, 23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Potter, A. W. et al. High precision but systematic offset in a standing bioelectrical impedance analysis (BIA) compared with dual-energy X-ray absorptiometry (DXA). BMJ Nutr. Prev. Health 5, 254–262 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kabiri, L. S., Hernandez, D. C. & Mitchell, K. Reliability, validity, and diagnostic value of a pediatric bioelectrical impedance analysis scale. Child. Obes. 11, 650–655 (2015).

    Article  PubMed  Google Scholar 

  42. Ramnitz, M. S. & Lodish, M. B. Racial disparities in pubertal development. Semin. Rneprod. Med. 31, 333–339 (2013).

  43. Meyer, K. A. et al. Ethnic variation in body composition assessment in a sample of adolescent girls. Int. J. Pediatr. Obes. 6, 481–490 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Enago for their English editing services.

Funding

This research was supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) in 2024 (2022RIS-005).

Author information

Authors and Affiliations

Authors

Contributions

Dohyun Chun: acquisition of data, analysis, drafting the article, final approval of article. Seo Jung Kim: drafting the article, revising it critically for important intellectual content, final approval of article. Junghwan Suh: conception, design, interpretation of data, final approval of article. Jihun Kim: conception, design, interpretation of data, final approval of article. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Junghwan Suh or Jihun Kim.

Ethics declarations

Competing interests

D.C. and J.K. are employees and holding stocks of Global Prediction Co., Ltd. S.J.K. and J.S. declare that they have no competing interests.

Ethics approval and consent to participate

This study was approved by the Institutional Review Board (IRB) of Yonsei Medical University, and the need for informed consent was waived because this was a de-identified retrospective study (IRB No. 4-2023-1312).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun, D., Kim, S.J., Suh, J. et al. Timing, velocity, and magnitude of pubertal changes in body composition: a longitudinal study. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03299-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03299-w

  • Springer Nature America, Inc.

Navigation