Log in

LNC942 promoting METTL14-mediated m6A methylation in breast cancer cell proliferation and progression

  • Article
  • Published:
Oncogene Submit manuscript

A Correction to this article was published on 15 February 2022

This article has been updated

Abstract

Increasing evidence supports that long noncoding RNAs (lncRNAs) act as master regulators involved in tumorigenesis and development at the N6-methyladenine (m6A) epigenetic modification level. However, the underlying regulatory mechanism in breast cancer (BRCA) remains elusive. Here, we unveil that LINC00942 (LNC942) exerts its functions as an oncogene in promoting METTL14-mediated m6A methylation and regulating the expression and stability of its target genes CXCR4 and CYP1B1 in BRCA initiation and progression. Specifically, LNC942 and METTL14 were significantly upregulated accompanied with the upregulation of m6A levels in BRCA cells and our included BRCA cohorts (n = 150). Functionally, LNC942 elicits potent oncogenic effects on promoting cell proliferation and colony formation and inhibiting cell apoptosis, subsequently elevating METTL14-mediated m6A methylation levels and its associated mRNA stability and protein expression of CXCR4 and CYP1B1 in BRCA cells. Mechanistically, LNC942 directly recruits METTL14 protein by harboring the specific recognize sequence (+176–+265), thereby stabilized the expression of downstream targets of LNC942 including CXCR4 and CYP1B1 through posttranscriptional m6A methylation modification in vitro and in vivo. Therefore, our results uncover a novel LNC942-METTL14-CXCR4/CYP1B1 signaling axis, which provides new targets and crosstalk m6A epigenetic modification mechanism for BRCA prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: The association of LNC942, m6A, and METTL14 expression in BRCA cells and tissues.
Fig. 2: Knockdown LNC942 inhibits m6A and METTL14 expression levels.
Fig. 3: Effects of LNC942 on cell proliferation, colony formation, metastasis, and apoptosis in BRCA cells.
Fig. 4: METTL14 rescued the BRCA cells proliferation inhibition caused by LNC942 knockdown.
Fig. 5: Knockdown LNC942 inhibits RNA stability and expression of CXCR4 and CYP1B1.
Fig. 6: METTL14 rescued the CXCR4, CYP1B1 and m6A expression inhibition caused by LNC942 knockdown.
Fig. 7: METTL14 promoting cell proliferation regulated by LNC942 in vivo.
Fig. 8: Proposed model depicting regulation and roles of LNC942-METTL14- CXCR4/CYP1B1 signaling axis in BRCA cells.

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings in this study are available in this study and its Supplementary materials, or are available from the corresponding author through reasonable request.

Change history

References

  1. Adhikari S, **ao W, Zhao YL, Yang YG. m(6)A: Signaling for mRNA splicing. RNA Biol. 2016;13:756–9.

    PubMed  PubMed Central  Google Scholar 

  2. Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018;28:507–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang H, Weng H, Chen J. m(6)A Modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020;37:270–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pan Y, Ma P, Liu Y, Li W, Shu Y. Multiple functions of m(6)A RNA methylation in cancer. J Hematol Oncol. 2018;11:48.

    PubMed  PubMed Central  Google Scholar 

  5. Niu Y, Zhao X, Wu YS, Li MM, Wang XJ, Yang YG. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function. Genom Proteom Bioinforma. 2013;11:8–17.

    CAS  Google Scholar 

  6. Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019;112:108613.

    PubMed  Google Scholar 

  7. ** D, Guo J, Wu Y, Du J, Yang L, Wang X, et al. m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 2019;12:135.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518:560–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31:591–606.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Zhang J, Wang Y. Long noncoding RNA GAS5-AS1 suppresses growth and metastasis of cervical cancer by increasing GAS5 stability. Am J Transl Res. 2019;11:4909–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang C, Zhang M, Ge S, Huang W, Lin X, Gao J, et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer. Cancer Med. 2019;8:4766–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell. 2017;31:127–41.

    PubMed  Google Scholar 

  13. Li F, Yi Y, Miao Y, Long W, Long T, Chen S, et al. N(6)-methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma. Cancer Res. 2019;79:5785–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yao QJ, Sang L, Lin M, Yin X, Dong W, Gong Y, et al. Mettl3-Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Res. 2018;28:952–4.

    PubMed  PubMed Central  Google Scholar 

  15. Yue B, Song C, Yang L, Cui R, Cheng X, Zhang Z, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer 2019;18:142.

    PubMed  PubMed Central  Google Scholar 

  16. Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m(6)A modification. Cell Stem Cell. 2018;22:191–205.e9.

    CAS  PubMed  Google Scholar 

  17. Panneerdoss SA-O, Eedunuri VK, Yadav P, Timilsina S, Rajamanickam S, Viswanadhapalli S, et al. Cross-talk among writers, readers, and erasers of m(6)A regulates cancer growth and progression. Sci Adv. 2018;4:eaar8263.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lang F, Singh RK, Pei Y, Zhang S, Sun K, Robertson ES. EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis. PLoS Pathog. 2019;15:e1007796.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuppers DA, Arora S, Lim Y, Lim AR, Carter LM, Corrin PD, et al. N(6)-methyladenosine mRNA marking promotes selective translation of regulons required for human erythropoiesis. Nat Commun. 2019;10:4596.

    PubMed  PubMed Central  Google Scholar 

  20. Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6)-methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65:529–43.

    CAS  PubMed  Google Scholar 

  21. Gu C, Wang Z, Zhou N, Li G, Kou Y, Luo Y, et al. Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N(6)-methyladenosine of Notch1. Mol Cancer. 2019;18:168.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, et al. m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18:2622–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gong D, Zhang J, Chen Y, Xu Y, Ma J, Hu G, et al. The m(6)A-suppressed P2RX6 activation promotes renal cancer cells migration and invasion through ATP-induced Ca(2+) influx modulating ERK1/2 phosphorylation and MMP9 signaling pathway. J Exp Clin Cancer Res. 2019;38:233.

    PubMed  PubMed Central  Google Scholar 

  24. Yang X, Zhang S, He C, Xue P, Zhang L, He Z, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer. 2020;19:46.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu J, Eckert MA-O, BA-OX Harada, Liu SM, Lu Z, Yu K, et al. m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol. 2018;20:1074–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7.

    CAS  PubMed  Google Scholar 

  27. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    PubMed  Google Scholar 

  28. Kashyap D, Kaur H. Cell-free miRNAs as non-invasive biomarkers in breast cancer: Significance in early diagnosis and metastasis prediction. Life Sci. 2020;246:117417.

    CAS  PubMed  Google Scholar 

  29. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18.

    CAS  PubMed  Google Scholar 

  30. Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov. 2017;16:167–79.

    CAS  PubMed  Google Scholar 

  31. Zhi H, Li Y, Wang L. Profiling DNA methylation patterns of non-coding RNAs (ncRNAs) in human disease. Adv Exp Med Biol. 2018;1094:49–64.

    CAS  PubMed  Google Scholar 

  32. Zhu KP, Zhang CL, Ma XL, Hu JP, Cai T, Zhang L. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther. 2019;27:518–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mego M, Cholujova D, Minarik G, Sedlackova T, Gronesova P, Karaba M, et al. CXCR4-SDF-1 interaction potentially mediates trafficking of circulating tumor cells in primary breast cancer. BMC Cancer. 2016;16:127.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang F, Takagaki Y, Yoshitomi Y, Ikeda T, Li J, Kitada M, et al. Inhibition of dipeptidyl peptidase-4 accelerates epithelial-mesenchymal transition and breast cancer metastasis via the CXCL12/CXCR4/mTOR Axis. Cancer Res. 2019;79:735–46.

    CAS  PubMed  Google Scholar 

  35. Golmohammadzadeh G, Mohammadpour A, Ahangar N, Shokrzadeh M. Polymorphisms in Phase I (CYP450) Genes CYP1A1 (rs4646421), CYP1B1 (rs1056836), CYP19A1 (rs749292) and CYP2C8 (rs1058930) and their relation to risk of breast cancer: a case-control study in Mazandaran Province in North of Iran. Open Access Maced J Med Sci. 2019;7:2488–96.

    PubMed  PubMed Central  Google Scholar 

  36. Yu AM, Batra N, Tu MJ, Sweeney C. Novel approaches for efficient in vivo fermentation production of noncoding RNAs. Appl Microbiol Biotechnol. 2020;104:1927–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    CAS  PubMed  Google Scholar 

  38. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu N, Parisien M, Dai Q, Zheng G, He C, Pan T, et al. Modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. 2013;19:1848–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang D, Qiao J, Wang G, Lan Y, Li G, Guo X, et al. N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res. 2018;46:3906–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ashouri A, Sayin VI, Van den Eynden J, Singh SX, Papagiannakopoulos T, Larsson E. Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events. Nat Commun. 2016;7:13197.

    CAS  PubMed  Google Scholar 

  42. Tao Y, Li Y, Huang J, Liang B. Screening LncRNAs related to the prognosis of patients with lung adenocarcinoma by bioinformatics. Int J Lab Med (in Chinese). 2019;40:1541–4.

  43. Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537:369–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3. Mol Cancer. 2019;18:143.

    PubMed  PubMed Central  Google Scholar 

  45. Du H, Zhao Y, He J, Zhang Y, ** H, Liu M, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 2016;7:12626.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen SA-O, Zhou L, Wang Y. ALKBH5-mediated m(6)A demethylation of lncRNA PVT1 plays an oncogenic role in osteosarcoma. Cancer Cell Int. 2020;20:34.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yan J, Huang X, Zhang X, Chen Z, Ye C, **ang W, et al. LncRNA LINC00470 promotes the degradation of PTEN mRNA to facilitate malignant behavior in gastric cancer cells. Biochem Biophys Res Commun. 2020;521:887–93.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully appreciate the efforts and contributions of doctors, nurses, and technical staff at the First Hospital of China Medical University, Cancer Hospital of China Medical University.

Funding

This work was supported by grants from the National Natural Science Foundation of China [No. 31828005, 81872905, and 81673475], National Natural Science Foundation of China and Liaoning joint fund key program [No. U1608281], Liaoning Revitalization Talents Program [XLYC1807155], China Postdoctoral Science Foundation (Grant No. 2019M661180), Special Foundation of China postdoctoral science foundation (Grant No. 2019T120225), and Shenyang S&T Projects (19-109-4-09).

Author information

Authors and Affiliations

Authors

Contributions

HW, MW, and TS conceived and designed the project. TS, ZW, XW, XD, HG, and WY performed experiments and/or data acquisition and analyses; YW, XH, WQ, SL, DX, YW, QC, YL, YW, and BF contributed technical/reagents materials, analytic tools and/or grant support; HW, MW, and TS prepared, wrote, and/or revision the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Minjie Wei or Huizhe Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of China Medical University. All the animal experiments performed in this study were approved by the Institutional Animal Care and Use Committee of China Medical University.

Informed consent

All of the authors have written informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Wu, Z., Wang, X. et al. LNC942 promoting METTL14-mediated m6A methylation in breast cancer cell proliferation and progression. Oncogene 39, 5358–5372 (2020). https://doi.org/10.1038/s41388-020-1338-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1338-9

  • Springer Nature Limited

This article is cited by

Navigation