Log in

Blood myo-inositol concentrations in preterm and term infants

  • Article
  • Published:
Journal of Perinatology Submit manuscript

Abstract

Objective

To describe relationship between cord blood (representing fetal) myo-inositol concentrations and gestational age (GA) and to determine trends of blood concentrations in enterally and parenterally fed infants from birth to 70 days of age.

Design/Methods

Samples were collected in 281 fed or unfed infants born in 2005 and 2006. Myo-inositol concentrations were displayed in scatter plots and analyzed with linear regression models of natural log-transformed values.

Results

In 441 samples obtained from 281 infants, myo-inositol concentrations varied from nondetectable to 1494 μmol/L. Cord myo-inositol concentrations decreased an estimated 11.9% per week increase in GA. Postnatal myo-inositol concentrations decreased an estimated 14.3% per week increase in postmenstrual age (PMA) and were higher for enterally fed infants compared to unfed infants (51% increase for fed vs. unfed infants).

Conclusions

Fetal myo-inositol concentrations decreased with increasing GA. Postnatal concentrations decreased with increasing PMA and were higher among enterally fed than unfed infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Cord myo-inositol concentration with prediction curves resulting linear regression models of natural log-transformed myo-inositol concentration with left censoring by gestational age at birth (weeks).
Fig. 2: Serial myo-inositol concentration with prediction curves resulting linear regression models of natural log-transformed myo-inositol concentration with left censoring by PMA (weeks) and feeding category (enterally fed, upper panel; NPO, lower panel).

Similar content being viewed by others

Data availability

Data reported in this paper may be requested through a data use agreement. Further details are available at https://neonatal.rti.org/index.cfm?fuseaction=DataRequest.Home.

References

  1. Hallman M. Inositol during perinatal transition. Neo Reviews. 2015;16:e84.

    Google Scholar 

  2. Carver JD, Stromquist CI, Benford VJ, Minervini G, Benford SA, Barness LA. Postnatal inositol levels in preterm infants. J Perinatol. 1997;17:389–92.

    CAS  PubMed  Google Scholar 

  3. Brusati V, Józwik M, Józwik M, Teng C, Paolini C, Marconi AM, et al. Fetal and maternal non-glucose carbohydrates and polyols concentrations in normal human pregnancies at term. Pediatr Res. 2005;58:700–4.

    Article  CAS  PubMed  Google Scholar 

  4. Pereira GR, Baker L, Egler J, Corcoran L, Chiacacci R. Serum myo-inositol concentrations in premature infants fed human milk, formula for infants, and parenteral nutrition. Am J Clin Nutr. 1990;51:589–93.

    Article  CAS  PubMed  Google Scholar 

  5. Cavalli C, Teng C, Battaglia FC, Bevilacqua G. Free sugar and sugar alcohol concentrations in human breast milk. J Pediatr Gastroenterol Nutr. 2006;42:215–21.

    Article  CAS  PubMed  Google Scholar 

  6. Bromberger P, Hallman M. Myoinositol in small preterm infants: relationship between intake and serum concentration. J Pediatr Gastroenterol Nutr. 1986;5:455–8.

    Article  CAS  PubMed  Google Scholar 

  7. American Academy of Pediatrics. Committee on Nutrition. Commentary on breast-feeding and infant formulas, including proposed standards for formulas. Pediatrics. 1976;57:278–85.

    Google Scholar 

  8. Committee on Nutrition. Recommendations of the expert panel for nutrient levels in infant formulas, table D-2. In: Pediatric nutrition handbook. 5th ed. Elk Grove Village, IL: American Academy of Pediatrics; 2004.

  9. Phelps DL, Watterberg KL, Nolen TL, Cole CA, Cotten CM, Oh W, et al. Effects of Myo-inositol on type 1 retinopathy of prematurity among preterm infants <28 weeks’ gestational age: a randomized clinical trial. JAMA. 2018;320:1649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phelps DL, Ward RM, Williams RL, Watterberg KL, Laptook AR, Wrage LA, et al. Pharmacokinetics and safety of a single intravenous dose of myo-inositol in preterm infants of 23-29 wk. Pediatr Res. 2013;74:721–9. Erratum in: Pediatr Res 2014;75:803. Pediatr Res 2016; 80:326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Phelps DL, Ward RM, Williams RL, Nolen TL, Watterberg KL, Oh W, et al. Safety and pharmacokinetics of multiple dose myo-inositol in preterm infants. Pediatr Res. 2016;80:209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ward RM, Sweeley J, Lugo RA. Inositol analysis by HPLC and its stability in scavenged sample conditions. Med Chem. 2015;5:077–80.

    Article  CAS  Google Scholar 

  13. Carlomagno G, De Grazia S, UnferV, Manna F. Myo-inositol in a new pharmaceutical form: a step forward to a broader clinical use. Expert Opin Drug Deliv. 2012;9:267–71.

    Article  CAS  PubMed  Google Scholar 

  14. Lewin LM, Melmed S, Passwell JH, Yannai Y, Brish M, Orda S, et al. Myoinositol in human neonates: serum concentrations and renal handling. Pediatr Res. 1978;12:3–6.

    Article  CAS  PubMed  Google Scholar 

  15. Dessi A, Fanos V. Myoinositol: a new marker of intrauterine growth restriction? J Obstetr Gynaecol. 2013;33:776–80.

    Article  CAS  Google Scholar 

  16. Sanz-Cortés M, Figueras F, Bargalló N, Padilla N, Amat-Roldan I, Gratacós E. Abnormal brain microstructure and metabolism in small-for-gestational-age term fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol. 2010;336:159–65.

    Article  Google Scholar 

  17. Regnault TR, Teng C, de Vrijer B, Galan HL, Wilkening RB, Battaglia FC. The tissue and plasma concentration of polyols and sugars in sheep intrauterine growth retardation. Exp Biol Med. 2010;235:999–1006.

    Article  CAS  Google Scholar 

  18. Barberini L, Noto A, Fattuoni C, Grapov D, Casanova A, Fenu G, et al. Urinary metabolomics (GC-MS) reveals that low and high birth weight infants share elevated inositol concentrations at birth. J Matern-Fetal Neonatal Med. 2014;27:20–6.

    Article  CAS  PubMed  Google Scholar 

  19. Story L, Damodaram MS, Supramaniam V, Allsop JM, Mcguinness A, Patel A, et al. Myo-inositol metabolism in appropriately grown and growth restricted fetuses: a proton magnetic resonance spectroscopy study. Eur J Obstet Gynecol Reprod Biol. 2013;170:77–81.

    Article  CAS  PubMed  Google Scholar 

  20. Holub BJ. The nutritional importance of inositol and the phosphoinositides. N Engl J Med. 1992;326:1285–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kalhan SC. Nonglucose carbohydrates and infant nutrition and metabolism. J Nutr. 2009;139:1611–2.

    Article  CAS  PubMed  Google Scholar 

  22. Hallman M, Saugstad OD, Porreco RP, Epstein BL, Gluck L. Role of myoinositol in regulation of surfactant phospholipids in the newborn. Early Hum Dev. 1985;10:245–54.

    Article  CAS  PubMed  Google Scholar 

  23. Brown J, Crawford TJ, Alsweiler J, Crowther CA. Dietary supplementation with myo-inositol in women during pregnancy for treating gestational diabetes. Cochrane Database Syst Rev. 2016;9:CD012048.

    PubMed  Google Scholar 

  24. Berry GT, Wu S, Buccafusca R, Ren J, Gonzales LW, Ballard PL, et al. Loss of murine Na+/myo-inositol cotransporter leads to brain myo-inositol depletion and central apnea. J Biol Chem. 2003;278:18297–302.

    Article  CAS  PubMed  Google Scholar 

  25. Dai Z, Chung SK, Miao D, Lau KS, Chan AW, Kung AW. Sodium/myo-inositol cotransporter 1 and myo-inositol are essential for osteogenesis and bone formation. J Bone Min Res. 2011;26:582–90.

    Article  CAS  Google Scholar 

  26. Chau JF, Lee MK, Law JW, Chung SK, Chung SS. Sodium/myo-inositol cotransporter-1 is essential for the development and function of the peripheral nerves. FASEB J. 2005;19:1887–9.

    Article  CAS  PubMed  Google Scholar 

  27. Buccafusca R, Venditti CP, Kenyon LC, Johanson RA, Van Bockstaele E, Ren J, et al. Characterization of the null murine sodium/myo-inositol cotransporter 1 (Smit1 or Slc5a3) phenotype: myo-inositol rescue is independent of expression of its cognate mitochondrial ribosomal protein subunit 6 (Mrps6) gene and of phosphatidylinositol levels in neonatal brain. Mol Genet Metab. 2008;95:81–95.

    Article  CAS  PubMed  Google Scholar 

  28. Staat BC, Galan HL, Harwood JE, Lee G, Marconi AM, Paolini CL, et al. Transplacental supply of mannose and inositol in uncomplicated pregnancies using stable isotopes. J Clin Endocrinol Metab. 2012;97:2497–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Quirk JG Jr, Bleasdale JE. Myo-Inositol homeostasis in the human fetus. Obstet Gynecol. 1983;62:41–44.

    CAS  PubMed  Google Scholar 

  30. Jauniaux E, Hempstock J, Teng C, Battaglia FC, Burton GJ. Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy: maintenance of redox potential in a low oxygen environment. J Clin Endocrinol Metab. 2005;90:1171–5.

    Article  CAS  PubMed  Google Scholar 

  31. Greene ND, Leung KY, Copp AJ. Inositol, neural tube closure and the prevention of neural tube defects. Birth Defects Res A Clin Mol Teratol. 2016;109:68–80.

    Article  CAS  Google Scholar 

  32. Hallman M, Bry K, Hoppu K, Lappi M, Pohjavuori M. Inositol supplementation in premature infants with respiratory distress syndrome. N Engl J Med. 1992;326:1233–9.

    Article  CAS  PubMed  Google Scholar 

  33. Hallman M, Arjomaa P, Hoppu K. Inositol supplementation in respiratory distress syndrome: relationship between serum concentration, renal excretion, and lung effluent phospholipids. J Pediatr. 1987;110:604–10.

    Article  CAS  PubMed  Google Scholar 

  34. Longmuir KJ, Bleasdale JE, Quirk JG, Johnston JM. Regulation of lamellar body acidic glycerophospholipid biosynthesis in fetal rabbit lung in organ culture. Biochim Biophys Acta. 1982;712:356–64.

    Article  CAS  PubMed  Google Scholar 

  35. Sozo F, Ishak N, Bhatia R, Davis PG, Harding R. Surfactant phospholipid composition of gastric aspirate samples differs between male and female very preterm infants. Pediatr Res. 2017;82:839–49.

    Article  CAS  PubMed  Google Scholar 

  36. Di Renzo GC, Johnston JM, Okazaki T, Okita JR, MacDonald PC, Bleasdale JE. Phosphatidylinositol-specific phospholipase C in fetal membranes and uterine decidua. J Clin Investig. 1981;67:847–56.

    Article  PubMed  Google Scholar 

  37. Brown LD, Cheung A, Harwood JEF, Battaglia FC. Inositol and mannose utilization rates in term and late-preterm infants exceed nutritional intakes. J Nutr. 2009;139:1648–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holub BJ. Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev Nutr. 1986;6:563–97.

    Article  CAS  PubMed  Google Scholar 

  39. Troyer DA, Schwertz DW, Kreisberg JI, Venkatachalam MA. Inositol phospholipid metabolism in the kidney. Annu Rev Physiol. 1986;48:51–71.

    Article  CAS  PubMed  Google Scholar 

  40. Barsk OA, Papusha VZ, Ivanova MM, Rudman DM, Finegold MJ. Developmental expression and function of aldehyde reductase in proximal tubules of the kidney. Am J Physiol Ren Physiol. 2005;289:F200–7.

    Article  CAS  Google Scholar 

  41. Friedman CA, McVey J, Borne MJ, James M, May WL, Temple DM, et al. Relationship between serum inositol concentration and development of retinopathy of prematurity: a prospective study. J Pediatr Ophthalmol Strabismus. 2000;37:79–86.

    CAS  PubMed  Google Scholar 

  42. Leung KY, Mills K, Burren KA, Copp AJ, Greene ND. Quantitative analysis of myo-inositol in urine, blood and nutritional supplements by high-performance liquid chromatography tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879:2759–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Institutes of Health and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), through the Neonatal Research Network and the Pediatric Pharmacology Research Units Network, and the National Eye Institute provided grant support for the Inositol Cross-Sectional Blood study. The study was planned in 2004; recruitment was in 2005–2006. While NICHD staff did have input into the study design, conduct, analysis, and manuscript drafting, the content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Data collected at participating sites of the NICHD Neonatal Research Network (NRN) were transmitted to RTI International, the data coordinating center (DCC) for the network, which stored, managed, and analyzed the data for this study. On behalf of the NRN, Dr. Abhik Das (DCC Principal Investigator) and Ms. Lisa Wrage (DCC Statistician) had full access to all the data in the study and take responsibility for the integrity of the data and accuracy of the data analysis. The NICHD Pediatric Pharmacology Research Unit (PPRU) network provided support and advice in designing the PK study (JVA, JVDA, AAV, SEK, RMW), analyzing the data (SEK), and conducting the Inositol Assay (RDL): Jacob V. Aranda, MD PhD FRCPC, Wayne State University (U10 HD37261); John van der Anker, MD, Children’s National Medical Center (U10 HD45993); Steven E. Kern, PhD, College of Pharmacy, Robert M. Ward, MD, Department of Pediatrics, University of Utah Medical Center (U10 HD45986); Alexander A. Vinks, PharmD PhD FCP, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati (U10 HD37249); Richard D. Leff, PharmD FCCP, Texas Tech University Health Sciences Center, Pediatric Pharmacology Research & Development Center (U10 HD46000). We are indebted to our medical and nursing colleagues and the infants and their parents who took part in this study.

Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network

Alan H. Jobe17, Michael S. Caplan18, Abbot R. Laptook19, Angelita M. Hensman19, Ronald N. Goldberg20, Kathy J. Auten20, Stephanie Wilson Archer21, James A. Lemons22, Dianne E. Herron22, Leslie Dawn Wilson22, W. Kenneth Poole23, Jeanette O’Donnell Auman23, Betty K. Hastings23, Norbert T. Kadima23, James W. PickettII23, Lisa A. Wrage23, Patricia Chess27, Linda J. Reubens27, Erica Burnell27, Mary Rowan27, Cassandra A. Horihan27, Nancy J. Peters28, Richard A. Ehrenkranz29, Patricia Gettner29, Monica Konstantino29, Joann Poulsen29, Janet Taft29.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Luc P. Brion.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Members of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network are listed below Acknowledgements.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brion, L.P., Phelps, D.L., Ward, R.M. et al. Blood myo-inositol concentrations in preterm and term infants. J Perinatol 41, 247–254 (2021). https://doi.org/10.1038/s41372-020-00799-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-00799-5

  • Springer Nature America, Inc.

This article is cited by

Navigation