Log in
Supplementary Figure 5: Measured values of supracellular (tissue-level) mechanical properties do not depend on droplet size. | Nature Methods

Supplementary Figure 5: Measured values of supracellular (tissue-level) mechanical properties do not depend on droplet size.

From: In vivo quantification of spatially varying mechanical properties in develo** tissues

Supplementary Figure 5

(a) Comparison of the experimental outcomes 30 minutes after injection of two sets of ferrofluid droplets with different size range in the PZ tissue: droplets in sets #1 and #2 have average droplet radius of 20 μm and 40 μm, respectively. Data from set #1 and set #2 are shown in red and gray, respectively. The percentage of larvae that do not survive the procedure increases with the size of the droplets (from 2.4% in set #1 to 11.4% in set #2) and fewer of the larger droplets remain in the PZ tissue (69.9% in set #1 and 31.4% in set #2). The percentage of droplets found in the yolk increases from 27.7% in set #1 to 57.1% in set #2 (N=83 in set #1 and N=39 in set #2; N=number of injected embryos). (b) Comparison of the measured mechanical properties for the two sets of droplets. The measured mechanical properties are the same within the error. The obtained values for set #1 are E = 272 ± 45 Pa, η1 = 293 ± 100 Pa s, η2 = 3168 ± 425 Pa s (N=11). The obtained values for set #2 are E = 212 ± 12 Pa, η1 = 191 ± 19 Pa s, η2 = 2919 ± 515 Pa s (N=8). In all cases, the measurements involved only a single droplet actuation per embryo, with N indicating the number of embryos (samples). (c) Correlation analysis of droplet size and measured values of mechanical properties. No correlation between droplet radius and the measured values is observed, as indicated by the Pearson's correlation coefficient, r. Values reported here are mean ± s.e.m.

Back to article page

Navigation