Log in

Elevated Levels of Superoxide Dismutase Protect Transgenic Plants Against Ozone Damage

  • Research
  • Published:
Bio/Technology Submit manuscript

Abstract

To evaluate the feasibility of using engineered antioxidant enzymes as an approach to improve the tolerance of plants to ambient stress, we have constructed transgenlc tobacco plants that overproduce superoxide dismutase (SOD), an enzyme which converts superoxide radicals into hydrogen peroxide and oxygen, and is believed to play a crucial role in antioxidant defense. We have targeted the MnSOD from Nicotiana plumbaginifolia either to the chloroplasts or to the mitochondria, and evaluated the ozone tolerance of transgenic and control plants. Enhanced SOD activity in the mitochondria had only a minor effect on ozone tolerance. However, overproduction of SOD in the chloroplasts resulted in a 3–4 fold reduction of visible ozone injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarczynski, M.C., Jensen, R.G. and Bohnert, H.J. 1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259: 508–510.

    Article  CAS  Google Scholar 

  2. Murata, N., Ishizaki-Nishizawa, O., Higashi, S., Hayashi, H., Tasaka, Y. and Nishida, I. 1992. Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710–713.

    Article  CAS  Google Scholar 

  3. Bowler, C., Van Montagu, M. and Inzé, D. 1992. Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43: 83–116.

    Article  CAS  Google Scholar 

  4. Bowler, C., Van Camp, W., Van Montagu, M. and Inzé, D. 1994. Superoxide dismutase in plants. CRC Crit. Rev. Plant Sci. In press.

  5. Asada, K. and Takahashi, M. 1987. Production and scavenging of active oxygen in photosynthesis, p. 227–287. In: Photoinhibition. Kyle, D.J., Osmond, C.B. and Arntzen, C.J. (Eds.). Elsevier Science Publishers B.V., Amsterdam, The Netherlands.

    Google Scholar 

  6. Halliwell, B. and Gutteridge, J.M.C., 1989. Free Radicals in Biology and Medicine. Clarendon Press, Oxford, U.K.

    Google Scholar 

  7. Van Camp, W., Van Montagu, M. and Inzé, D. 1993. Superoxide dismutases, in press In: Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. Foyer, C.H. and Mullineaux, P.M. (Eds.). CRC Press, Boca Raton, FL.

    Google Scholar 

  8. Sen Gupta, A., Heinen, J.L., Holaday, A.S., Burke, J.J. and Alien, R.D. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 90: 1629–1633.

    Article  CAS  Google Scholar 

  9. Guderian, R. 1985. Air Pollution by Photochemical Oxidants. Springer-Verlag, Berlin, FRG.

    Book  Google Scholar 

  10. Heck, W.W., Taylor, O.C. and Tingey, D.T. 1988. Assessment of Crop Loss from Air Pollutants Elsevier, London, U.K.

    Book  Google Scholar 

  11. Bowler, C., Slooten, L., Vandenbranden, S., De Rycke, R., Botterman, J., Sybesma, C., Van Montagu, M. and Inzé, D. 1991. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 10: 1723–1732.

    Article  CAS  Google Scholar 

  12. Lefohn, A.S. 1992. Surface Level Ozone Exposures and their Effects on Vegetation. Lewis Publishers, Chelsea, U.K.

    Google Scholar 

  13. Guderian, R., 1977. Air Pollution. Springer-Verlag, New York, USA.

    Book  Google Scholar 

  14. Seckmayer, G. and Payer, H.D. 1993. A new sunlight simulator for ecological research on plants. J. Photobiochem. Photobiol. In press.

  15. Darrall, N.M. 1989. The effect of air pollutants on physiological processes in plants. Plant, Cell & Environm. 12: 1–30.

    Article  CAS  Google Scholar 

  16. Heath, R.L. 1988. Biochemical mechanisms of pollutant stress, p. 259–286 In: Assessment of Corp Loss from Air Pollutants. Heck, W.W., Taylor, O.C. and Tingey, D.T. (Eds). Elsevier, London, U.K.

    Chapter  Google Scholar 

  17. Floyd, R.A., West, M.S., Hogsett, W.E. and Tingey, D.T. 1989. Increased 8-hydroxyguanine content of chloroplast DNA from ozone-treated plants. Plant Physiol. 91: 644–647.

    Article  CAS  Google Scholar 

  18. Sakaki, T., Kondo, N. and Sugahara, K. 1983. Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: role of active oxygens. Physiol. Plant. 59: 28–34.

    Article  CAS  Google Scholar 

  19. Pitcher, L.H., Brennan, E., Hurley, A., Dunsmuir, P., Tepperman, J.M. and Zilinskas, B.A. 1991. Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol. 97: 452–455.

    Article  CAS  Google Scholar 

  20. Tepperman, J.M. and Dunsmuir, P. 1990. Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol. Biol. 14: 501–511.

    Article  CAS  Google Scholar 

  21. Elroy-Stein, O., Bernstein, Y. and Groner, Y. 1986. Overproduction of human Cu/Zn-superoxide dismutase in transfected cells: extenuation of paraquat-mediated cytotoxicity and enhancement of lipid peroxidation. EMBO J. 5: 615–622.

    Article  CAS  Google Scholar 

  22. Ceballos, I., Delabar, J.M., Nicole, A., Lynch, R.E., Hallewell, R.A., Kamoun, P. and Sinet, P.M. 1988. Expression of transfected human CuZn-superoxide dismutase gene in mouse L cells and NS20Y neuroblastoma cells induces enhancement of glutathione peroxidase activity. Biochem. Biophys. Acta 949: 58–64.

    CAS  PubMed  Google Scholar 

  23. Kelner, M.J. and Bagnell, R. 1990. Alteration of endogenous glutathione peroxidase, manganese superoxide dismutase, and glutathione transferase activity in cells transfected with a copper-zinc superoxide dismutase expression vector. Explanation for variations in paraquat resistance. J. Biol. Chem. 265: 10872–10875.

    Google Scholar 

  24. Pitcher, L.H., Brennan, E. and Zilinskas, B.A. 1992. The antiozonant ethyl-enediurea does not act via superoxide dismutase induction in bean. Plant Physiol. 99: 1388–1392.

    Article  CAS  Google Scholar 

  25. Scandalios, J.G. 1990. Response of plant antioxidant defense genes to environmental stress. Adv. Genet. 28: 1–41.

    Article  CAS  Google Scholar 

  26. Tsang, E.W.T., Bowler, C., Hérouart, D., Van Camp, W., Villarroel, R., Genetello, C., Van Montagu, M. and Inzé, D. 1991. Differential regulation of superoxide dismutase in plants exposed to environmental stress. Plant Cell 3: 783–792.

    Article  CAS  Google Scholar 

  27. Perl-Treves, R. and Galun, E. 1991. The tomato Cu,Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol. Biol. 17: 745–760.

    Article  CAS  Google Scholar 

  28. Payer, H.D., Blank, L.W., Gnatz, G., Schmolke, W., Schramel, P. and Bosch, C. 1986. Simultaneous exposure of forest trees to pollutants and climatic stress. Water Air Soil Pollut. 31: 485–491.

    Article  CAS  Google Scholar 

  29. Langebartels, C., Kerner, K., Leonardi, S., Schraudner, M., Trost, M., Heller, W. and Sanderaiann, H. Jr. 1991. Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol. 95: 882–889.

    Article  CAS  Google Scholar 

  30. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  31. Beauchamp, C.O. and Fridovich, I. 1973. Isozymes of superoxide dismutase from wheat germ. Biochim. Biophys. Acta 317: 50–64.

    Article  CAS  Google Scholar 

  32. Sandalio, L.M. and del Río, L.A. 1987. Localization of superoxide dismutase in glyoxysomes from Citrullus vulgaris. Functional implications in cellular metabolism. J. Plant Physiol. 127: 395–409.

    Article  CAS  Google Scholar 

  33. Cerović, Z.G. and Plesničar, M. 1984. An improved procedure for the isolation of intact chloroplasts of high photosynthetic capacity. Biochem. J. 223: 543–545.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camp, W., Willekens, H., Bowler, C. et al. Elevated Levels of Superoxide Dismutase Protect Transgenic Plants Against Ozone Damage. Nat Biotechnol 12, 165–168 (1994). https://doi.org/10.1038/nbt0294-165

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0294-165

  • Springer Nature America, Inc.

This article is cited by

Navigation