Log in

Effect of amino acid substitutions in the human IFN-γR2 on IFN-γ responsiveness

  • Original Article
  • Published:
Genes & Immunity Submit manuscript

Abstract

Patients with interferon-γ receptor (IFN-γR) null mutations have severe infections with poorly pathogenic Mycobacteria. The IFN-γR complex involves two IFN-γR1 and two IFN-γR2 chains, in which several amino acid substitutions, some linked to disease and some apparently naturally occurring, have been described. We developed a model system to study functional effects of genetic variations in IFN-γR2. We retrovirally transduced wild-type IFN-γR2 and IFN-γR2 carrying presently known amino acid substitutions in various human cell lines, and next determined the IFN-γR2 expression pattern as well as IFN-γ responsiveness. We determined that the T58R, Q64R, E147K and K182E variants of IFN-γR2 are fully functional, although the Q64R variant may be expressed higher on the cell membrane. The R114C, T168N and G227R variants were identified in patients that had disseminated infections with non-tuberculous Mycobacteria. Of these genetic variants, T168N was confirmed to be completely non-functional, whereas the novel variant G227R, and the previously reported R114C, were partial functional. The impaired IFN-γ responsiveness of R114C and G227R is mainly due to reduced receptor function, although expression on the cell membrane is reduced as well. We conclude that the T58R, Q64R, E147K and K182E variants are polymorphisms, whereas the R114C, T168N and G227R constitute mutations associated with disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ottenhoff TH, Verreck FA, Lichtenauer-Kaligis EG, Hoeve MA, Sanal O, van Dissel JT . Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae. Nat Genet 2002; 32: 97–105.

    Article  CAS  Google Scholar 

  2. van de Vosse E, Hoeve MA, Ottenhoff TH . Human genetics of intracellular infectious diseases: molecular and cellular immunity against mycobacteria and salmonellae. Lancet Infect Dis 2004; 4: 739–749.

    Article  CAS  Google Scholar 

  3. Valente G, Ozmen L, Novelli F, Geuna M, Palestro G, Forni G et al. Distribution of interferon-gamma receptor in human tissues. Eur J Immunol 1992; 22: 2403–2412.

    Article  CAS  Google Scholar 

  4. Hu X, Chakravarty SD, Ivashkiv LB . Regulation of interferon and Toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms. Immunol Rev 2008; 226: 41–56.

    Article  CAS  Google Scholar 

  5. Saha B, Jyothi PS, Chandrasekar B, Nandi D . Gene modulation and immunoregulatory roles of interferon gamma. Cytokine 2010; 50: 1–14.

    Article  CAS  Google Scholar 

  6. Bernabei P, Allione A, Rigamonti L, Bosticardo M, Losana G, Borghi I et al. Regulation of interferon-gamma receptor (IFN-gammaR) chains: a peculiar way to rule the life and death of human lymphocytes. Eur Cytokine Netw 2001; 12: 6–14.

    CAS  PubMed  Google Scholar 

  7. Krause CD, Lavnikova N, **e J, Mei E, Mirochnitchenko OV, Jia Y et al. Preassembly and ligand-induced restructuring of the chains of the IFN-gamma receptor complex: the roles of Jak kinases, Stat1 and the receptor chains. Cell Res 2006; 16: 55–69.

    Article  CAS  Google Scholar 

  8. Boehm U, Klamp T, Groot M, Howard JC . Cellular responses to interferon-gamma. Annu Rev Immunol 1997; 15: 749–795.

    Article  CAS  Google Scholar 

  9. Tessitore A, Pastore L, Rispoli A, Cilenti L, Toniato E, Flati V et al. Two gamma-interferon-activation sites (GAS) on the promoter of the human intercellular adhesion molecule (ICAM-1) gene are required for induction of transcription by IFN-gamma. Eur J Biochem 1998; 258: 968–975.

    Article  CAS  Google Scholar 

  10. Valente AJ, **e JF, Abramova MA, Wenzel UO, Abboud HE, Graves DT . A complex element regulates IFN-gamma-stimulated monocyte chemoattractant protein-1 gene transcription. J Immunol 1998; 161: 3719–3728.

    CAS  PubMed  Google Scholar 

  11. Clarke DL, Clifford RL, **darat S, Proud D, Pang L, Belvisi MG et al. TNFalpha and IFNgamma synergistically enhance transcriptional activation of CXCL10 in human airway smooth muscle cells via STAT-1, NF-kappaB and the transcriptional coactivator CREB-binding protein. J Biol Chem 2010; 285: 29101–29110.

    Article  CAS  Google Scholar 

  12. van den Elsen PJ, Holling TM, Kuipers HF, van der Stoep N . Transcriptional regulation of antigen presentation. Curr Opin Immunol 2004; 16: 67–75.

    Article  CAS  Google Scholar 

  13. Wang IM, Contursi C, Masumi A, Ma X, Trinchieri G, Ozato K . An IFN-gamma-inducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12 p40 expression in macrophages. J Immunol 2000; 165: 271–279.

    Article  CAS  Google Scholar 

  14. van Boxel-Dezaire AH, Stark GR . Cell type-specific signaling in response to interferon-gamma. Curr Top Microbiol Immunol 2007; 316: 119–154.

    CAS  PubMed  Google Scholar 

  15. Gomez JA, Sun W, Gama V, Hajkova D, Yoshida T, Wu Z et al. The C-terminus of interferon gamma receptor beta chain (IFNgammaR2) has antiapoptotic activity as a Bax inhibitor. Cancer Biol Ther 2009; 8: 1771–1786.

    Article  CAS  Google Scholar 

  16. Regis G, Conti L, Boselli D, Novelli F . IFNgammaR2 trafficking tunes IFNgamma-STAT1 signaling in T lymphocytes. Trends Immunol 2006; 27: 96–101.

    Article  CAS  Google Scholar 

  17. van de Wetering D, de Paus RA, van Dissel JT, van de Vosse E . Functional analysis of naturally occurring amino acid substitutions in human IFN-gammaR1. Mol Immunol 2010; 47: 1023–1030.

    Article  CAS  Google Scholar 

  18. Doffinger R, Jouanguy E, Dupuis S, Fondaneche M-C, Stephan J-L, Emile JF et al. Partial interferon-gamma receptor signaling chain deficiency in a patient with bacille Calmette-Guerin and Mycobacterium abscessus infection. J Infect Dis 2000; 181: 379–384.

    Article  CAS  Google Scholar 

  19. Vogt G, Bustamante J, Chapgier A, Feinberg J, Boisson DS, Picard C et al. Complementation of a pathogenic IFNGR2 misfolding mutation with modifiers of N-glycosylation. J Exp Med 2008; 205: 1729–1737.

    Article  CAS  Google Scholar 

  20. Nakashima H, Inoue H, Akahoshi M, Tanaka Y, Yamaoka K, Ogami E et al. The combination of polymorphisms within interferon-gamma receptor 1 and receptor 2 associated with the risk of systemic lupus erythematosus. FEBS Lett 1999; 453: 187–190.

    Article  CAS  Google Scholar 

  21. Schrijver HM, Hooper-van Veen T, van Belzen MJ, Crusius JB, Pena AS, Barkhof F et al. Polymorphisms in the genes encoding interferon-gamma and interferon-gamma receptors in multiple sclerosis. Eur J Immunogenet 2004; 31: 133–140.

    Article  CAS  Google Scholar 

  22. Gao P-S, Mao X-Q, Jouanguy E, Pallier A, Doffinger R, Tanaka Y et al. Nonpathogenic common variants of IFNGR1 and IFNGR2 in association with total serum IgE levels. Biochem and Biophys Res Comm 1999; 263: 425–429.

    Article  CAS  Google Scholar 

  23. Rosenzweig SD, Dorman SE, Uzel G, Shaw S, Scurlock A, Brown MR et al. A novel mutation in IFN-gamma receptor 2 with dominant negative activity: biological consequences of homozygous and heterozygous states. J Immunol 2004; 173: 4000–4008.

    Article  CAS  Google Scholar 

  24. Barnes PF, Lu S, Abrams JS, Wang E, Yamamura M, Modlin RL . Cytokine production at the site of disease in human tuberculosis. Infect Immun 1993; 61: 3482–3489.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vogt G, Chapgier A, Yang K, Chuzhanova N, Feinberg J, Fieschi C et al. Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nat Genet 2005; 37: 692–700.

    Article  CAS  Google Scholar 

  26. Heemskerk MH, Blom B, Nolan G, Stegmann AP, Bakker AQ, Weijer K et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med 1997; 186: 1597–1602.

    Article  CAS  Google Scholar 

  27. van de Vosse E, de Paus RA, van Dissel JT, Ottenhoff THM . Molecular complementation of IL-12Rβ1 deficiency reveals functional differences between IL-12Rβ1 alleles including partial IL-12Rβ1 deficiency. Hum Mol Genet 2005; 14: 3847–3855.

    Article  CAS  Google Scholar 

  28. Higuchi R, Krummel B, Saiki RK . A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 1988; 16: 7351–7367.

    Article  CAS  Google Scholar 

  29. Kinsella TM, Nolan GP . Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther 1996; 7: 1405–1413.

    Article  CAS  Google Scholar 

  30. Kohlhuber F, Rogers NC, Watling D, Feng J, Guschin D, Briscoe J et al. A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol Cell Biol 1997; 17: 695–706.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E van de Vosse.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Paus, R., Kilic, S., van Dissel, J. et al. Effect of amino acid substitutions in the human IFN-γR2 on IFN-γ responsiveness. Genes Immun 12, 136–144 (2011). https://doi.org/10.1038/gene.2010.74

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.74

  • Springer Nature Limited

Keywords

Navigation