Log in

Recognition of DNA by designed ligands at subnanomolar concentrations

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SMALL molecules that specifically bind with high affinity to any predetermined DNA sequence in the human genome would be useful tools in molecular biology and potentially in human medicine. Simple rules have been developed to control rationally the sequence specificity of minor-groove-binding polyamides containing N-methylimidazole and N-methylpyrrole amino acids. Two eight-ring pyrrole–imidazole polyamides differing in sequence by a single amino acid bind specifically to respective six-base-pair target sites which differ in sequence by a single base pair. Binding is observed at subnanomolar concentrations of ligand. The replacement of a single nitrogen atom with a C-H regulates affinity and specificity by two orders of magnitude. The broad range of sequences that can be specifically targeted with pyrrole–imidazole polyamides, coupled with an efficient solid-phase synthesis methodology, identify a powerful class of small molecules for sequence-specific recognition of double-helical DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wade, W. S., Mrksich, M. & Dervan, P. B. J. Am. chem. Soc. 114, 8783–8794 (1992).

    Article  CAS  Google Scholar 

  2. Mrksich, M. et al. Proc. natn. Acad. Sci. U.S.A. 89, 7586–7590 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Wade, W. S., Mrksich, M. & Dervan, P. B. Biochemistry 32, 11385–11389 (1993).

    Article  CAS  Google Scholar 

  4. Pelton, J. G. & Wemmer, D. E. Proc. natn. Acad. Sci. U.S.A. 86, 5723–5727 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Pelton, J. G. & Wemmer, D. E. J. Am. chem. Soc. 112, 1393–1399 (1990).

    Article  CAS  Google Scholar 

  6. Mrksich, M. & Dervan, P. B. J. Am. chem. Soc. 115, 2572–2576 (1993).

    Article  CAS  Google Scholar 

  7. Geierstanger, B. H., Jacobsen, J. P., Mrksich, M., Dervan, P. B. & Wemmer, D. E. Biochemistry 33, 3055–3062 (1994).

    Article  CAS  Google Scholar 

  8. Geierstanger, B. H., Dwyer, T. J., Bathini, Y., Lown, J. W. & Wemmer, D. E. J. Am. chem. Soc. 115, 4474–4482 (1993).

    Article  CAS  Google Scholar 

  9. Geierstanger, B. H., Mrksich, M., Dervan, P. B. & Wemmer, D. E. Science 266, 646–650 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Mrksich, M. & Dervan, P. B. J. Am. chem. Soc. 117, 3325–3332 (1995).

    Article  CAS  Google Scholar 

  11. Mrksich, M. & Dervan, P. B. J. Am. chem. Soc. 115, 9892–9899 (1993).

    Article  CAS  Google Scholar 

  12. Dwyer, T. J., Geierstanger, B. H., Mrksich, M., Dervan, P. B. & Wemmer, D. E. J. Am. chem. Soc. 115, 9900–9906 (1993).

    Article  CAS  Google Scholar 

  13. Mrksich, M. & Dervan, P. B. J. Am. chem. Soc. 116, 3663–3664 (1994).

    Article  CAS  Google Scholar 

  14. Mrksich, M., Parks, M. E. & Dervan, P. B. J. Am. chem. Soc. 116, 7983–7988 (1994).

    Article  CAS  Google Scholar 

  15. Chen, Y. H. & Lown, J. W. J. Am. chem. Soc. 116, 6995–7005 (1994).

    Article  CAS  Google Scholar 

  16. Cho, J. Y., Parks, M. E. & Dervan, P. B. Proc. natn. Acad. Sci. U.S.A. 92, 10389–10392 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Baird, E. E. & Dervan, P. B. J. Am. chem. Soc. 118, 6141–6146 (1996).

    Article  CAS  Google Scholar 

  18. Galas, D. & Schmitz, A. Nucleic Acids Res. 5, 3157–3170 (1978).

    Article  CAS  Google Scholar 

  19. Fox, K. R. & Waring, M. J. Nucleic Acids Res. 12, 9271–9285 (1984).

    Article  CAS  Google Scholar 

  20. Brenowitz, M., Senear, D. F., Shea, M. A. & Ackers, G. K. Meth. Enzym. 130, 132–181 (1986).

    Article  CAS  Google Scholar 

  21. Steitz, T. A. Rev. Biophys. 23, 205–280 (1990).

    Article  CAS  Google Scholar 

  22. Desjarlais, J. R. & Berg, J. M. Proc. natn. Acad. Sci. U.S.A. 89, 7345–7349 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Desjarlais, J. R. & Berg, J. M. Proc. natn. Acad. Sci. U.S.A. 90, 2256–2260 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Jamieson, A. C., Kim, S.-H. & Wells, J. A. Biochemistry 33, 5689–5695 (1994).

    Article  CAS  Google Scholar 

  25. Rebar, R. J. & Pabo, C. O. Science 263, 671–673 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Choo, Y. & Klug, A. Proc. natn. Acad. Sci. U.S.A. 91, 11163–11167 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Choo, Y. & Klug, A. Proc. natn. Acad. Sci. U.S.A. 91, 11168–11172 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Letovsky, J. & Dynan, W. S. Nucleic Acids Res. 17, 2639–2653 (1989).

    Article  CAS  Google Scholar 

  29. Maxam, A. M. & Gilbert, W. S. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  30. Iverson, B. L. & Dervan, P. B. Nucleic Acids Res. 15, 7823–7830 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trauger, J., Baird, E. & Dervan, P. Recognition of DNA by designed ligands at subnanomolar concentrations. Nature 382, 559–561 (1996). https://doi.org/10.1038/382559a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382559a0

  • Springer Nature Limited

This article is cited by

Navigation