Log in

Remote sensing of ocean wave spectra by interferometric synthetic aperture radar

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE two-dimensional power spectra of ocean waves are of great interest not only to oceanographers but also in practical applications such as wave forecasting, trans-oceanic ship routing, and design of coast and offshore installations. Remote sensing of ocean surface waves can be difficult using conventional synthetic aperture radar (SAR) techniques, but waves can be observed clearly by SAR in the interferometric configuration (INSAR)1,2. This improvement is due to the ability of INSAR to provide images of the local surface velocity field, in contrast to conventional SAR for which the imaging process is related indirectly to the complex modulation of the surface reflectivity by longer waves and currents. Here we show that INSAR can be used to obtain wavenumber spectra that are in agreement with power spectra measured in situ. This new method thus has considerable potential to provide instantaneous spatial information about the structutre of ocean wave fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein, R. M. & Zebker, H. A. Nature 328, 707–709 (1987).

    Article  ADS  Google Scholar 

  2. Goldstein, R. M., Barnett, T. P. & Zebker, H. A. Science 246, 1282–1285 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Rice, S. O. Commun. pure appl. Math. 4, 351–378 (1951).

    Article  Google Scholar 

  4. Crombie, D. D. Nature 175, 681–683 (1955).

    Article  ADS  Google Scholar 

  5. Elachi, C. E. & Brown, W. E. IEEE Trans. Antennas Propagation AP-25, 84–95 (1977).

    Article  ADS  Google Scholar 

  6. Harger, R. O. Synthetic Aperture Radar Systems (Academic, New York, 1970).

    Google Scholar 

  7. Raney, R. K. IEEE Trans. Aerosp. Electron. Syst. AES-7, 499–505 (1971).

    Article  ADS  Google Scholar 

  8. Valenzuela, G. R. Boundary Layer Met. 13, 61–85 (1978).

    Article  ADS  Google Scholar 

  9. Alpers, W. R., Ross, D. B. & Rufenach, C. L. J. geophys. Res. 86, 6481–6498 (1981).

    Article  ADS  Google Scholar 

  10. Hasselmann, K. et al. J. geophys. Res. 90, 4659–4686 (1985).

    Article  ADS  Google Scholar 

  11. Zimmerman, J. T. F. Geophys. astrophys. Fluid Dyn. 11, 34–47 (1978).

    Article  ADS  Google Scholar 

  12. Valenzuela, G. R., Plant, W. J., Schuler, D. L., Chen, D. T. & Keller, W. C. J. geophys. Res. 90, 4931–4942 (1985).

    Article  ADS  Google Scholar 

  13. Raney, R. K. & Lowry, R. T. Proc. 12th. Int. Symp. Remote Sensing Envir. 683–702 (1978).

  14. Dean, R. G. & Dalrymple, R. A. Water Wave Mechanics for Engineers and Scientists (Prentice-Hall, Englewood Cliffs, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marom, M., Goldstein, R., Thornton, E. et al. Remote sensing of ocean wave spectra by interferometric synthetic aperture radar. Nature 345, 793–795 (1990). https://doi.org/10.1038/345793a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345793a0

  • Springer Nature Limited

Navigation