Log in

Limitations in the use of actomyosin threads as model contractile systems

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Recent studies have suggested that actomyosin threads may provide a useful model for studying the properties of contractile systems1–3. The development of highly sensitive positional feedback transducers has enabled the properties of these threads to be measured reproducibly1. Potential applications include such systems as ventricle, smooth muscle and non-muscle preparations, from which it is difficult to obtain suitable fibres for mechanical studies. In addition, studies with chemically modified myosins may provide new insights into the relationships between the biochemical and mechanical events in the cross-bridge cycle. However, there are indications that the mechanical properties of actomyosin threads differ from those of intact fibres in several important respects. For example, contraction velocity is proportional to isometric tension in threads2, but is independent of filament density in intact fibres4. We have now determined the force–velocity characteristics of actomyosin threads prepared from muscles with known differences in their physiological contraction velocities. No direct relationships could be found between the velocity characteristics of the threads and those of intact muscle. We conclude that the measured velocities of threads reflect properties of the actomyosins other than cross-bridge cycling times, thus severely limiting the usefulness of this technique for comparative purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crooks, R. & Cooke, R. J. gen. Physiol. 69, 37–55 (1977).

    Article  CAS  Google Scholar 

  2. Cooke, R. & Franks, K. E. J. molec. Biol. 120, 361–373 (1978).

    Article  CAS  Google Scholar 

  3. Matsumura, F., Yoshimoto, Y. & Kamiya, N. Nature 285, 169–171 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Josephson, R. K. J. exp. Zool. 194, 135–154 (1975).

    Article  CAS  Google Scholar 

  5. Lehman, W. & Szent-Györgyi, A. G. J. gen. Physiol. 66, 1–30 (1975).

    Article  CAS  Google Scholar 

  6. Spudich, J. A. & Watt, S. J. biol. Chem. 246, 4866–4871 (1971).

    CAS  PubMed  Google Scholar 

  7. Barany, M. & Close, R. I. J. Physiol., Lond. 213, 455–474 (1971).

    Article  CAS  Google Scholar 

  8. Flitney, F. W. & Johnston, I. A. J. Physiol., Lond. 295, 49P–50P (1979).

    CAS  PubMed  Google Scholar 

  9. Lännergren, J. J. Physiol., Lond. 283, 501–521 (1978).

    Article  Google Scholar 

  10. Close, R. J. Physiol, Lond. 204, 331–346 (1969).

    Article  CAS  Google Scholar 

  11. Barany, M. J. gen. Physiol. 50, Suppl. 197–216 (1967).

    Article  Google Scholar 

  12. D'Haese, J. & Komnick, H. Z. Zellforsch. 134, 411–426, 427–434 (1972).

    Article  CAS  Google Scholar 

  13. Josephs, R. & Harrington, W. F. Biochemistry 5, 3474–3487 (1966).

    Article  CAS  Google Scholar 

  14. Kaminer, B. & Bell, A. L. J. molec. Biol. 20, 391–401 (1966).

    Article  CAS  Google Scholar 

  15. Pinset-Härström, I. & Truffy, J. J. molec. Biol. 134, 173–188 (1979).

    Article  Google Scholar 

  16. Pinset-Härström, I. & Whalen, R. G. J. molec. Biol. 134, 189–197 (1979).

    Article  Google Scholar 

  17. Syrovy, I. Int. J. Biochem. 10, 383–389 (1979).

    Article  CAS  Google Scholar 

  18. Itzhaki, R. F. & Gill, D. M. Analyt. Biochem. 9, 401–410 (1964).

    Article  CAS  Google Scholar 

  19. Hill, A. V. Proc. R. Soc. B126, 136–195 (1938).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altringham, J., Yancey, P. & Johnston, I. Limitations in the use of actomyosin threads as model contractile systems. Nature 287, 338–340 (1980). https://doi.org/10.1038/287338a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287338a0

  • Springer Nature Limited

This article is cited by

Navigation