Log in

Factors controlling long-term changes of the eutrophicated ecosystem of Pärnu Bay, Gulf of Riga

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phytoplankton, mesozooplankton, mysids and fish larvae were studied during 15–29 annual cycles measured weekly to monthly in Pärnu Bay, the Gulf of Riga. The monthly variability of the biological data was related to temperature, ice conditions, salinity, influx of nutrients, the North Atlantic Oscillation (NAO) index, cloudiness and solar activity. Phytoplankton development was mainly a function of the NAO index. For the whole study period the abundance of zooplankton increased with increasing water temperature and solar activity. Significant correlations between phytoplankton and zooplankton densities were found until 1990. After the invasion of the predatory cladoceran Cercopagis pengoi in 1991, the zooplankton community was likely to be regulated by the introduced species rather than phytoplankton dynamics. The increased abundances of rotifers and copepods triggered the increase in mysid densities. The development of herring larvae was positively affected by the high density of copepods and rotifers but also by increased eutrophication. Until 1990 there was no significant relationship between the density of zooplankton and herring larvae. A negative relationship between the density of zooplankton and herring larvae in the 1990s suggests that the major shift in zooplankton community resulted in food limitation for herring larvae. The results indicated that (1) atmospheric processes in the northern Atlantic explain a large part of the interannual variation of the local phytoplankton stock, (2) trophic interactions control the development of pelagic communities at higher trophic levels, and (3) the introduction of an effective intermediate predator has repercussions for the whole pelagic food web in Pärnu Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnston, A. G. & R. E. Livezey, 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115: 1083–1126.

    Google Scholar 

  • Chatfield, C., 1984. The analysis of Time Series. An Introduction, 3rd ed. Chapman and Hall, London, 286 pp.

    Google Scholar 

  • Dippner, J. W., J. Hänninen, H. Kuosa & I. Vuorinen, 2001. The influence of climate variability on zooplankton abundance in the northern Baltic Archipelago Sea (SW Finland). ICES J. Sea Res. 58: 569–578.

    Google Scholar 

  • Elmgren, R., 1989. Man's impact on the ecosystem of the Baltic Sea: energy flows today and at the turn of the century. Ambio 18: 326–332.

    Google Scholar 

  • Elmgren, R., 2001. Understanding human impact on the Baltic ecosystem: changing views in recent decades. Ambio 30: 222–231.

    PubMed  Google Scholar 

  • Fournier, R. O., 1978. Biological aspects of the Nova Scotia shelfbreak fronts. In Bowman, M. J. & W. E. Esaias (eds), Oceanic Fronts in Coastal Processes. Springer-Verlag, Berlin: 69–77.

    Google Scholar 

  • Hänninen, J., I. Vuorinen & P. Hjelt, 2000. Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnol. Oceanogr. 45: 703–710.

    Google Scholar 

  • Hansson, S., U. Larsson & S. Johannson, 1990. Selective predation by herring and mysids, and zooplankton community structure in the Baltic Sea coastal area. J. Plankton Res. 12: 1099–1116.

    Google Scholar 

  • Heerkloss, R., W. Schnese & B. Adamkiewicz-Chojnacka, 1991. Seasonal variation in the biomass of zooplankton in two shallow coastal water inlets differing in their stage of eutrophication. Int. Rev. Ges. Hydrobiol. 76: 397–404.

    Google Scholar 

  • HELCOM, 1988. Guidelines for the Baltic Monitoring Programme for the third stage. Baltic Sea Environ. Proc. 27D: 1–161.

    Google Scholar 

  • ICES, 2001. Report of the Baltic Fisheries Assessment Working Group. ICES CM 2001/ACFM: 18, 546 pp.

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 165: 191–194.

    Google Scholar 

  • Kahru, M., J. Elken, I. Kotta, M. Simm & K. Vilbaste, 1984. Plankton distributions and processes across a front in the open Baltic Sea. Mar. Ecol. Prog. Ser. 20: 101–111.

    Google Scholar 

  • Kornilovs, G., L. Sidrevics & J. W. Dippner, 2001. Fish and zooplankton interactions in the Central Baltic Sea. ICES J. Sea Res. 58: 579–588.

    Google Scholar 

  • Kotta, J., 2000. Impact of eutrophication and biological invasions on the structure and functions of benthic macrofauna. Dissertationes Biologicae Universitatis Tartuensis, 63. Tartu University Press, Tartu: 1–160.

    Google Scholar 

  • Kotta, I. & J. Kotta, 1999. Distribution and migration of mysids in the Gulf of Riga (Northern Baltic). Proc. Estonian Acad. Sci. Biol. Ecol. 48: 284–295.

    Google Scholar 

  • Kotta, I. & J. Kotta, 2001. Distribution of mysids on bank slopes in the Gulf of Riga. Proc. Estonian Acad. Sci. Biol. Ecol. 50: 14–21.

    Google Scholar 

  • Kotta, J. & I. Kotta, 1998. Distribution and invasion ecology of Marenzelleria viridis in the Estonian coastal waters. Proc. Estonian Acad. Sci. Biol. Ecol. 47: 212–220.

    Google Scholar 

  • Kotta, J., H. Orav & E. Sandberg-Kilpi, 2001. Ecological consequence of the introduction of the polychaete Marenzelleria viridis into a shallow water biotope of the northern Baltic Sea. J. Sea Res. 46: 273–280.

    Google Scholar 

  • Leppäkoski, E. & S. Olenin, 2001. The meltdown of biogeographical peculiarities of the Baltic Sea: the interaction of natural and man-made processes. Ambio 30: 202–209.

    PubMed  Google Scholar 

  • Loder, J. W. & T. Platt, 1985. Physical controls on phytoplankton production at tidal fronts. In Gibbs, P. E. (ed.), Proceedings of the 19th European Marine Biology Symposium. Cambridge University Press, Cambridge: 3–21.

    Google Scholar 

  • Möllmann, C., G. Kornilovs & L. Sidrevics, 2000. Long-term dynamics of main mesozooplankton species in the central Baltic Sea. J. Plankton Res. 22: 2015–2038.

    Google Scholar 

  • Ojaveer, E., 1995. Large-scale processes in the ecosystem of the Gulf of Riga. In Ojaveer, E. (ed.), Ecosystem of the Gulf of Riga between 1920 and 1990. Estonian Academy Publishers, Tallinn: 268–277.

    Google Scholar 

  • Ojaveer, E. & M. V. Kalejs, 1974. On some oceanographic factors determining the abundance and distribution of pelagic fish in the Baltic Sea, (in Russian). Okeanologiya 14: 544–554

    Google Scholar 

  • Ojaveer, H. & A. Lumberg, 1995. On the role of Cercopagis (Cercopagis) pengoi (Ostroumov) in Pärnu Bay and the NE part of the Gulf of Riga Ecosystem. Proc Estonian Acad. Sci. Ecol. 5: 20–25.

    Google Scholar 

  • Ojaveer, E. & M. Simm, 1975. Effect of zooplankton abundance and temperature on time and place of reproduction of Baltic herring groups. Merentutkimuslait. Julk. 239: 139–145.

    Google Scholar 

  • Ojaveer, E., A. Lumberg & H. Ojaveer, 1998. Highlights of zooplankton dynamics in Estonian waters (Baltic Sea). ICES J. Mar. Sci. 55: 748–755.

    Google Scholar 

  • Ojaveer, H., A. Lankov, M. Eero, J. Kotta, I. Kotta & A. Lumberg, 1999. Changes in the ecosystem of the Gulf of Riga from the 1970s to 1990s. ICES J. Mar. Sci. 56: 33–40.

    Google Scholar 

  • Ottersen, G., B. Planque, A. Belgrano, E. Post, 1998. Phytoplankton changes in the North Atlantic. Nature 391: 546.

    Google Scholar 

  • Rivier, I. K., 1998. The predatory Cladocera (Onychopoda: Podonidae, Polyphemidae, Cercopagidae) and Leptodorida of the world. In Dumont, H. J. F. (ed.), Guides to the Identification of theMicroinvertebrates of the Continental Waters of theWorld, Vol. 13. Backhuys Publishers, Leiden, The Netherlands.

    Google Scholar 

  • Rogers, J. C., 1984. The association between the North Atlantic Oscillation and the Southern Oscillation in the northern hemisphere. Mon. Weather Rev. 112: 1999–2015.

    Google Scholar 

  • Rudstam L. G., K. Danielsson, S. Hansson & S. Johansson, 1989. Diel vertical migration and feeding patterns of Mysis mixta (Crustacea, Mysidacea) in the Baltic. Mar. Biol. 101: 43–52.

    Google Scholar 

  • Rudstam, L. G., G. Aneer & M. Hildén, 1994. Top-down control in the pelagic Baltic ecosystem. Dana 10: 105–129.

    Google Scholar 

  • Simm, M. & E. Ojaveer, 2000. Dynamics of copepods and fish larvae in Pärnu Bay (NE part of the Gulf of Riga) in spring-summer period. Proc. Estonian Acad. Sci. Biol. Ecol. 49: 317–326.

    Google Scholar 

  • Suursaar, Ñ., 1995. Nutrients in the Gulf of Riga. In Ojaveer, E. (ed.), Ecosystem of the Gulf of Riga between 1920 and 1990. Estonian Academy Publishers, Tallinn: 41–50.

    Google Scholar 

  • Tenson, J., 1995. Phytoplankton of the Pärnu Bay. In Ojaveer, E. (ed.), Ecosystem of the Gulf of Riga between 1920 and 1990. Estonian Academy Publishers, Tallinn: 105–126.

    Google Scholar 

  • Viitasalo, M., I. Vuorinen & S. Saesmaa, 1995. Mesozooplankton dynamics in the northern Baltic Sea: implications of variations in hydrography and climate. J. Plankton Res. 17: 1857–1878.

    Google Scholar 

  • Wulff, F., G. Ærtebjerg, G. Nicolaus, Å. Niemi, P. Ciszewski, S. Schultz & W. Kaiser, 1986. The changing pelagic ecosystem of the Baltic Sea. Ophelia Suppl. 4: 299–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotta, J., Simm, M., Kotta, I. et al. Factors controlling long-term changes of the eutrophicated ecosystem of Pärnu Bay, Gulf of Riga. Hydrobiologia 514, 259–268 (2004). https://doi.org/10.1023/B:hydr.0000018224.56324.44

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:hydr.0000018224.56324.44

Navigation