Log in

Comparison of the Protection against Neuronal Injury by Hypothalamic Peptides and by Dexamethasone

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The comparative study has been carried out on hypothalamic neurohormone (proline-rich polypeptides-PRP) and synthetic glucocorticoid dexamethasone (DEX) protective properties at the systemic (i/m) administration. Both background and evoked electrical activity (on n.ischiadicus stimulation) of single neurons in the lumbo-sacral part (laminae II–VI and VII–VIII by Rexed) and field potentials (FP) of spinal cord were recorded during acute experiments on intact spinal rats, subjected to Vipera Raddei (VR) venom intoxication, and chronic spinal cord trauma (hemisection). The action of PRP was characterized by the pronounced activation of the background activity (BA) with adaptive effect, depending on dose and initial level of BA, by results of the statistical analysis. A high effect is received from comparatively small doses. For comparison it was used strong glucocorticoid DEX, possessing single-directed but less expressed excitative action on investigated spinal cord neurons. The initial increase of BA frequency with subsequent depression was the typical symptom of venom influence. A protective effect of preliminary PRP injection is revealed on the succeeding VR venom influence. Use of PRP and DEX causes the increase of reduced activity of neurons on the injury side of animals with spinal cord hemisection. It provides the possibility of the therapeutic utilization. It was revealed considerably more expressed PRP action on neurodegenerative process connected to spinal cord injury (in comparison with DEX). The influence of hormones was compared in identical conditions of experiments on non-injured (control) and injured sides. Taking into consideration revealed protection characteristic of PRP and also the ability of snake venom to stabilize and to prolong its action combined with these preparations, the assumption is made on prospective use of the specified combination in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Galoyan, A. A., Kipriyan, T. K., Sarkissian, J. S., Sarkissian, E. J., Grigorian, Y. Kh., Andreasian, A. S., and Chavushian, V. A. 2000. The protection of snake venom (Vipera Raddei Boettger 1898) neuronal injury by the new hypothalamic neurohormone. Neurochem. Res. 25:791–800.

    Google Scholar 

  2. Galoyan, A. A., Terio, N., Berg, M. J., and Marks, N. 2000. Effects of Proline-Rich Peptide (PRP) derived from neurophysin-II on caspases of murine neuroblastoma: Evidence for caspase-2 and-6 activation. Neurochemistry (RAS and NAS RA). (in press).

  3. Galoyan, A. A. 1997. Biochemistry of Novel Cardioactive Hormones and Immunomodulators of the Functional System Neu-rosecretory Hypothalamus-Endocrine Heart. Nauka Publishers, Moscow. 233p.

    Google Scholar 

  4. Cushman, D. W. et al. 1980. Enzyme inhibitors and drugs. (ed Sandler, M.), Pages 2310–2478, Macmillan, London.

    Google Scholar 

  5. Haghighi, S. S., Clapper, A., Johnson, D. C., Stevens, A., and Prapaisilp, A. 1998. Effect of 4-aminopyridine and single-dose methylprednisolone on functional recovery after a chronic spinal cord injury. Spinal Cord 36:6–12.

    Google Scholar 

  6. Young, W. and Flamm, E. S. 1982. Effect of high-dose corticosteroid therapy in blood flow, evoked potentials and extracellular calcium in experimental spinal cord injury. J. Neurosurg. 57:667–673.

    Google Scholar 

  7. Mc Call, J. M., Braughler, J. M., and Hall, E. D. 1987. Lipid peroxidation and the role of the oxygen radicals in CNS injury. Act. Anesth. Belg. 38:373–379.

    Google Scholar 

  8. Gonzalez, S., Grillo, C., De Nicola, A. G., Piroli, G., Angulo, J., Mc Ewen, B. S., and De Nicola, A. F. 1994. Dexamethasone increases adrenalectomy-depressed (Na + K) ATPase and ouabain binding in spinal cord ventral horn. J. Neurochem. 63: 1962–1970.

    Google Scholar 

  9. Hall, E. D. 1993. Neuroprotective action of glucocorticoid and nonglucocorticoid steroids in acute neuronal injury. Cell. Mol. Neurobiol. 13:415–432.

    Google Scholar 

  10. Hall, E. D. and Braughler, J. M. 1992. Glucocorticoid mechanisms in acute spinal cord injury: a review and therapeutic rationale. Surg. Neurol. 18:320–327.

    Google Scholar 

  11. Hall, E. D., Wolf, J. L., and Braughler, J. M. 1984. Effect of a single large dose of methylprednisolone sodium succinate on experimental posttraumatic spinal cord ischemia. Dose-response and time-action analysis. J. Neurosurg. 61:124–130.

    Google Scholar 

  12. Xu, Z. X. Q., J., Hoggan, E. L., and Perot, P. L. 1992. Protective effect of methylprednisolone on vascular injury in rat spinal cord injury. J. Neurotrauma 9:245–253.

    Google Scholar 

  13. Taoka, Y. and Okajima, K. Spinal cord injury in the rat. 1998. Prog. Neurobiol. 56:341–358.

    Google Scholar 

  14. Kipriyan, T. K. 1974. Effects of hydrocortisone on electrical activity of cat spinal cord. Neirofiziologia (Kiev) 6:3,260–3,265.

    Google Scholar 

  15. Kipriyan, T. K. 1987. Neurotropic effects of corticosteroid hormones: Biol. Zh. Armenia 40:123–128.

    Google Scholar 

  16. Kipriyan, T. K. and Chavushian, V. A. 1989. Changes in the electrical activity of spinal cord neurons of adrenalectomized rats under the effect of corticosteroid hormones. Neirofiziologia (Kiev) 21:233–238.

    Google Scholar 

  17. Chavushian, V. A., Matinyan, L. A., Andreasian, A. S., and Kipriyan, T. K. 1995. Influence of dexamethasone on electrical activity of spinal cord neurons of rats after sciatic nerve transection. Neirofiziologia (Kiev) 27:26–32.

    Google Scholar 

  18. Sarkissian, J. S., Kipriyan, T. K., Grigorian, Y. Kh., Sarkissian, E. J., Amiryan, S. V., Chavushyan, V. A., and Avetisyan Z. A. 1999. On influence of Vipera raddei Boettger 1898 venom on the activity of the rats spinal cord neurons in norm and pathology. Vestnik IAELPS, St.-Petersburg (Yerevan) 15:127–132.

    Google Scholar 

  19. Macaya, A., Munell, F., Ferrer, I., de Torres C., and Reventos, J. 1998. Cell death and associated c-jun induction in perinatal hypoxia-ischemia. Effect of the neuroprotective drug dexamethasone. Mol. Brain Res. 56:29–37.

    Google Scholar 

  20. Tsukahara, N., Fuller, D. N. G., and Brooks, V. B. 1968. Collateral pyramidal influences on the corticorubrospinal system. J. Neurophysiol. 31:467–484.

    Google Scholar 

  21. Jarratt, H. and Hyland, B. 1999. Neuronal activity in red nucleus during forelimb refch-to-grasp movements. Neuroscience 88:629–642.

    Google Scholar 

  22. Friedman, H. S. and Priebe, C. E. 1998. Estimating stimulus response latency. J. Neurosci. Meth. 83:185–194.

    Google Scholar 

  23. Pollard, J. H. 1977. A Handbook of Numerical and Statistical Techniques. Cambridge University Press, Cambridge-London-New York-Melbourne.

    Google Scholar 

  24. Karlsson, E. 1979. Snake venoms, In: Chemistry of Protein Toxins in Snake Venoms (ed Chen-Yuan). Ch. 5., Pages 159–212, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  25. Slotta, K. 1955. Chemistry and biochemistry of snake venoms. Prog. Chem. Org. Nat. Prod. 12:406–465.

    Google Scholar 

  26. Kaiser, E. and Michel, H. 1958. Die Biochemie der tierischen Gifte, Franz. Deuticke, Wien.

    Google Scholar 

  27. Suzuki, T. and Iwanaga, S. 1970. Bradykinin, Kallidin, and Kallikrein. In: Handbook of Experimental Pharmacology (ed Erdos, E. G.). Vol. 25, Pages 193–212, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  28. Meaume, J. 1996. Les venins des serpents agents modificateurs de la coagulation sanguine. Toxicol. 4:25–58.

    Google Scholar 

  29. Tibbalis, J. 1998. The cardiovascular, coagulation and haematological effects of tiger snake (Notechis scutatus) prothrombin activator and investigation of release of vasoactive substances. Anaesth. Intensive Care 48:536–547.

    Google Scholar 

  30. Kato, N., Halprin, K. M., Matsuo, S., and Taylor, J. R. 1985. Dexamethasone directly inhibits snake venom phospholipase A. Biochem. Biophys. Res. Commun. 130:761–767.

    Google Scholar 

  31. Rudy, B. 1988. Diversity and ubiquity of K channels. Neuroscience 25:729–749.

    Google Scholar 

  32. Potassium channels structure, classification, function and therapeutic potential. 1990. (ed Cook) Chichester, Ellis Horwood Ltd.

  33. Garcia-Calvo, M., Leonard, R. J., Novick, J., Stevens, S. P., Schmalhofer, W., Kaczorowski, G. J., and Garcia, M. L. 1993. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J. Biol. Chem. 268:18866–18874.

    Google Scholar 

  34. Lin, C. S., Boltz, R. C., Blake, J. T., Nguyen, M., Talento, A., Fischer, P. A., Springer, M. S., Sigal, N. H., Slaughter, R. S., and Garcia M. L. 1993. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T-lymphocyte activation. J. Exp. Med. 177:3,637–3,645.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galoyan, A.A., Sarkissian, J.S., Kipriyan, T.K. et al. Comparison of the Protection against Neuronal Injury by Hypothalamic Peptides and by Dexamethasone. Neurochem Res 25, 1567–1578 (2000). https://doi.org/10.1023/A:1026662318816

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026662318816

Navigation