Log in

Vertical structure of a species-rich grassland canopy, treated with additional illumination, fertilization and mowing

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The canopy architecture of herbaceous communities has received little attention despite its obvious relevance for how plants interact. The objective of this study was to determine how the position of species within the canopy of a species-rich grassland depends on nutrient availability, light availability, and mowing regime. To enhance the generality of the results, species were classified into four growth-form groups according to two important morphological traits – narrow vs. wide leaves, leafy vs. leafless stem - grasses, sedges, upright forbs and rosette forbs. Vertical structure of the canopy was examined by point quadrat sampling of 40×40 cm permanent plots, treated by fertilization, additional illumination and mowing. As expected, fertilization and cessation of mowing allowed plants to grow taller, an effect of additional illumination was not detected. The relative height of species in the canopy was related to their leaf and stem morphology – species with narrow leaves and/or with a leafy stem were significantly taller. In addition, each growth-form group had a characteristic relative height: grasses > sedges > upright forbs > rosette forbs. All the experimental treatments led to a smaller number of more clearly distinguishable canopy strata with certain growth-form group(s) dominating in each. In (non-fertilized, non-illuminated and mown) control plots the dominance of grasses in the upper canopy layers was the most obvious - the remaining plants tended to improve their vertical position with all manipulations. The two contrasting growth-form groups – grasses and rosette forbs – responded similarily to illumination, becoming relatively shorter with added light. Sedges and upright forbs used additional light to `improve' their position in the canopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts, R. 1996. Nutrient resorption from senecing leaves of perennials: are there general patterns?, J. Ecol. 84: 597–608.

    Google Scholar 

  • Aerts, R., Boot, R. G. A. & van der Aart, P. J. M. 1991. The relation between above-and belowground biomass allocation patterns and competitive ability. Oecologia 87: 551–559.

    Google Scholar 

  • Ashby, M. 1961. Introduction to plant ecology. Macmillan, London.

    Google Scholar 

  • Barkman, J. J.: 1988. New systems of plant growth forms and phenological plant types. Pp. 9–44. In: Werger, M. J. A., van der Aart, P. J. M., During, H. J. & Verhoeven, J. T. A. (eds), Plant form and vegetation structure. SPB Academic Publishing, the Hague.

    Google Scholar 

  • Bazzaz, F. A. 1990. Plant-plant interactions in successional environments. Pp. 239–263. In: Grace, J. and Tilman, D. (eds), Perspectives on plant competition. Academic Press, New York.

    Google Scholar 

  • Berendse, F. 1985. The effect of grazing on the outcome of competition between plant species with different nutrient requirements. Oikos 44: 35–39.

    Google Scholar 

  • Bonser, S. P. & Reader, R. S. 1995. Plant competition and herbivory in relation to vegetation biomass. Ecology 76: 2178–2183.

    Google Scholar 

  • Casal, J. J., Sanchez, R. A. & Deregibus, V. A. 1987. The effect of light quality on shoot extension growth in three species of grasses. Ann. Bot. 59: 1–7.

    Google Scholar 

  • Cernusca, A. 1976. Energy exchange within individual layers of a meadow. Oecologia 23: 141–149.

    Google Scholar 

  • Cody, M. L. 1986. Structural niches in plant communities. Pp. 381–405. In: Diamond, J. and Case, T. J. (eds), Community ecology. Harper and Row, New York.

    Google Scholar 

  • Cody, M. L. 1991. Niche theory and plant growth form. Vegetatio 97: 39–55.

    Google Scholar 

  • Connolly, J. & Wayne, P. 1996. Asymmetric competition between plant species. Oecologia 108: 311–320.

    Google Scholar 

  • Cowling, R. M., Mustart, P. J., Laurie, H. & Richards, M. B. 1994. Species diversity; functional diversity and functional redundancy in fynobs communities. South Afr. J. Sci. 90: 333–337.

    Google Scholar 

  • de Kroon, H. & Knops, J. 1990. Habitat exploration through morphological plasticity in two chalk grassland perennials. Oikos 59: 39–49.

    Google Scholar 

  • Diaz, S., Acosta, A. & Cabido, M. 1994. Community structure in montane grassland of central Argentina in relation to land use. J. Veg. Sci. 5: 483–488.

    Google Scholar 

  • Dietz, H., Steinlein, T. & Ullmann, I. 1998. The role of growth form and correlated traits in competitive ranking of six perennial ruderal plant species grown in unbalanced mixtures. Acta Oecologica 19: 25–36.

    Google Scholar 

  • Eek, L. & Zobel, K. 1997. Effects of additional illumination and fertilization on seasonal changes in fine-scale grassland community structure. J. Veg. Sci. 8: 225–234.

    Google Scholar 

  • Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., Werner, W. & Paulißen, D. 1991. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1–248.

    Google Scholar 

  • Gaudet, C. L. & Keddy, P. A. 1988. A comparative approach to predicting competitive ability from plants traits. Nature 334: 242–243.

    Google Scholar 

  • Gimingham, C. H. 1951. The use of life form and growth form in the analysis of community structure, as illustrated by a comparison of two dune communities. J. Ecol. 39: 396–406.

    Google Scholar 

  • Goldberg, D. E. & Werner, P. A. 1983. Equivalence of competitors in plant communities: a null hypothesis and a field experimental approach. Am. J. Bot. 70: 1098–1104.

    Google Scholar 

  • Grime, J. P., Thompson, K., Hunt, R., Hodgson, J. G., Cornelissen, J. H. C., Rorison, I. H., Hendry, G. A. F., Ashenden, T. W., Askew, A. P., Band, S. R., Booth, R. E., Bossard, C. C., Campbell, B. D., Cooper, J. E. L., Davison, A. W., Gupta, P. L., Hall, W., Hand, D.W., Hannah, M. A., Hillier, S. H., Hodkinson, D. J., Jalili, A., Liu, Z., Mackey, J. M. L., Matthews, N., Mowforth, M. A., Neal, A. M., Reader, R. J., Reiling, K., Ross-Fraser, W., Spencer, R. E., Sutton, F., Tasker, D. E., Thorpe, P. C., Whitehouse, J. 1997. Integrated screening validates primary axes of specialisation in plants. Oikos 79: 259–281.

    Google Scholar 

  • Grime, J. P., Crick, J. C. & Rincon, J. E. 1986. The ecological significance of plasticity. Pp. 5–29. In: Jennings, D. H. & Trewavas, A. J. (eds), Plasticity in plants. Company of Biologists, Cambridge.

    Google Scholar 

  • Halloy, S. 1990. A morphological classification of plants, with special reference to the New Zealand alpine flora. J. Veg. Sci. 1: 291–304.

    Google Scholar 

  • Harley, J. L. & Harley, E. L. 1987. A check-list of mycorrhiza in the British flora. New Phytol. 105: 1–102.

    Google Scholar 

  • Henry, H. A. L. & Aarssen L.W. 1997. On the relationship between shade tolerance and shade avoidance strategies in woodland plants. Oikos 80: 575–582.

    Google Scholar 

  • Idso, S. B. & de Wit, C. T. 1970. Light relations in plant canopies. Applied Optics 9: 177–184.

    Google Scholar 

  • Johnson, I. R. & Thornley, J. H. M. 1987. A model of shoot:root partitioning with optimal growth. Ann. Bot. 60: 133–142.

    Google Scholar 

  • Kikuzawa, K. & Umeki, K. 1996. Effect of canopy structure on degree of asymmetry of competition in two forest stands in nothern Japan. Ann. Bot. 77: 565–571.

    Google Scholar 

  • Klepper, B. 1991. Root-shoot realtionships. Pp. 265–286. In: Waisel, Y., Eshel, A. & Kafkafi, U. (eds), Plant roots. The hidden half. Marcel Dekker, New York.

    Google Scholar 

  • Körner, C. 1991. Some often overlooked plant characteristics as determinants of plant growth: a reconsideration. Funct. Ecol. 5: 162–173.

    Google Scholar 

  • Körner, C. 1995. Scaling from species to vegetation: the usefulness of functional groups. Pp. 117–140. In: Schulze, E. D. & Mooney, H. A. (eds), Biodiversity and Ecosystem Function. Springer-Verlag, Berlin.

    Google Scholar 

  • Krall, H. & Pork, K. 1970. Laelatu puisniit. Pp. 115–127. In: Kumari, E. (ed.), Lääne-Eesti rannikualade loodus. Valgus, Tallinn.

  • Kull, O. & Aan, A. 1997. The relative share of graminoid and forb life-forms in a natural gradient of herb layer productivity. Ecography 20: 146–154.

    Google Scholar 

  • Kull, K. & Zobel, M. 1991. High species richness in an Estonian wooded meadow. J. Veg. Sci. 2: 711–714.

    Google Scholar 

  • Kull, K. & Zobel, K. 1995. Kas on veel ruumi? Ei, kõik on täis. Eesti Loodus 2: 33–35.

    Google Scholar 

  • Kull, O., Aan, A. & Sõelsepp, T. 1995. Light interception, nitrogen and leaf mass distribution in multilayer community. Funct. Ecol. 9: 589–595.

    Google Scholar 

  • Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T. D. A. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12: 474–478.

    Google Scholar 

  • Marrs, R. H., Bravington, M. & Rawes, M. 1988. Long-term vegetation change in the Juncus squarrosus grassland at Moor House, northern England. Vegetatio. 76: 179–187.

    Google Scholar 

  • McIntyre, S., Lavoral, S. & Tremont R. M. 1995. Plant lifehistory attributes: their relationship to disturbance response in herbaceous vegetation. J. Ecol. 83: 31–44.

    Google Scholar 

  • Mitchley, J. 1988. Control of relative abundance of perennials in chalk grassland in Southern England. II. Vertical canopy structure. J. Ecol. 76: 341–350.

    Google Scholar 

  • Mitchley, J. & Willems, J. H. 1995. Vertical canopy structure of Dutch chalk grasslands in relation to their management. Vegetatio 117: 17–27.

    Google Scholar 

  • Mooney, H. A. & Winner, W. E. 1991. Partitioning response of plants to stress. Pp. 129–141. In: Mooney, H. A., Winner, W. E. & Pell, E. J. (eds), Response of plants to multiple stresses. Academic Press, San Diego.

    Google Scholar 

  • Nadelhoffer, K. J., Aber, J. D. & Melillo, J. M. 1985. Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66: 1377–1390.

    Google Scholar 

  • Oikawa, T. & Saeki, T. 1977. Light regime in relation to plant population geometry. I. A Monte-Carlo simulation of light microclimates within a random distribution foliage. Bot. Mag. Tokyo 90: 1–10.

    Google Scholar 

  • Olff, H. 1992. Effects of light and nutrient availability on dry matter and N allocation in six successional grassland species. Oecologia 89: 412–421.

    Google Scholar 

  • Pärtel, M., Zobel, M., Zobel, K. & van der Maarel, E. 1996. The species pool and its relation to species richness: evidence from Estonian plant communities. Oikos 75: 111–117.

    Google Scholar 

  • Pechaèkova, S. & Krahulec, F. 1995. Efficient nitrogen economy: key to the success of Polygonum bistorta in an abandoned mountain meadow. Folia Geobotanica Pytotaxonomica 30: 211–222.

    Google Scholar 

  • Pickett, S. T. A., Kolasa, J. Armesto, J. J. & Collins, S. L. 1989. The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54: 129–136.

    Google Scholar 

  • Pokarzhevskaya, G. A. 1995. Morphological analysis of Alpine communities of the north-western Caucasus. Folia Geobotanica Phyottaxonomica 30: 179–210.

    Google Scholar 

  • Pons, T. L., van Rijnberk, H., Scheurwater, I. & var der Werf, A. 1993. Importance of the gradient in photosynthetically active radiation in a vegetation stand for leaf nitrogen allocation in two monocotyledons. Oecologia 95: 416–424.

    Google Scholar 

  • Saeki, T. 1960. Interrelationships between leaf amount, light distribution and total photosynthesis in plant community. Bot. Mag. Tokyo 73: 55–63.

    Google Scholar 

  • SAS Institute Inc. 1992. SAS. The technical report P-229

  • SAS/STAT. Software: changes and enchancements, release 6.07, SAS Institute Inc., Cary, pp. 289–366.

  • Tappeiner, U. & Cernuska, A. 1996. Microclimate and fluxes of water vapour, sensible heat and carbon dioxide in structurally differing subalpine plant communities in the Central Caucasus. Plant, Cell Env. 19: 403–417.

    Google Scholar 

  • Tilman, D. 1987. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol. Monogr. 57: 189–214.

    Google Scholar 

  • Tilman, D. 1990. Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 58: 3–15.

    Google Scholar 

  • Tooming, H. 1977. Solar radiation and crop formation. Gidrometeoizdat, Leningrad. (in Russian)

    Google Scholar 

  • Turtzin, S. N. 1978. Canopy structure and potential light competition in two adjacent annual plant communities. Ecology 59: 161–167.

    Google Scholar 

  • Weiher, E. & Keddy, P. A. 1995. Assembly rules, null models, and trait dispersion: new question from old patterns. Oikos 74: 159–164.

    Google Scholar 

  • Weiner, J. 1990. Asymmetric competition in a plant populations. Trends Ecol. Evol. 5: 360–364.

    Google Scholar 

  • Willems, J. H. & Nieuwstadt, M. G. L. 1996. Long-term after effects of fertilization on above-ground phytomass and species diversity in calcareous grassland. J. Veg. Sci. 7: 177–184.

    Google Scholar 

  • Willems, J. H., Peet, R. K. & Bik, L. 1993. Changes in chalkgrassland structure and species richness from selective nutrient additions. J. Veg. Sci. 4: 203–212.

    Google Scholar 

  • Willms, W. D. 1988. Response of rough fescue (Festuca scabrella) to light, water, temperature, and litter removal, under controlled conditions. Can. J. Bot. 66: 429–434.

    Google Scholar 

  • Yokozawa, M & Hara, T. 1995. Foliage profile, size structure and stem diameter-plant height relationship in crowded plant populations. Ann. Bot. 76: 271–285.

    Google Scholar 

  • Zobel, K., Moora, M. Brown, V. K., Niemelä, P. & Zobel, M. 1997. Secondary succession and herbivory in a subarctic grassland: community structure and diversity. Ecography 20: 595–604.

    Google Scholar 

  • Zobel, M. 1997. The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence?. Trends Ecol. Evol. 12: 266–269.

    Google Scholar 

  • Zobel, M., Suurkask, M., Rosén, E. & Pärtel, M. 1996. The dynamics of species richness in an experimentally restored calcareous grassland. J. Veg. Sci. 7: 203–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liira, J., Zobel, K. Vertical structure of a species-rich grassland canopy, treated with additional illumination, fertilization and mowing. Plant Ecology 146, 183–193 (2000). https://doi.org/10.1023/A:1009811117681

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009811117681

Navigation