Log in

Localized-Itinerant and Mott–Hubbard Transitions in Several Perovskites

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The localized-itinerant and Mott–Hubbard transitions in single-valent perovskites are distinguished. The approach to the Mott–Hubbard transition from the itinerant-electron side is characterized by the appearance of strong-correlation fluctuations within a metallic matrix; these fluctuations introduce a Curie–Weiss paramagnetism that is added to a strongly enhanced Pauli paramagnetism. As the critical bandwidth is approached, ordering of the strong-correlation fluctuations into a charge-density wave (CDW) may compete with a global Mott-Hubbard transition. The approach to the localized-itinerant electronic transition from the localized-electron side is illustrated by LaMnO3, where orbital ordering localizes the electrons of e-orbital parentage. In the mixed-valent La1−x Sr x MnO3 system, the doped holes evolve from small polarons to two-manganese Zener polarons to itinerant-electron behavior. The Zener polarons order at low temperatures into a CDW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. B. Goodenough, Prog. Solid State Chem. 5, 145 (1971).

    Google Scholar 

  2. W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).

    Google Scholar 

  3. J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 54, 13393 (1996).

    Google Scholar 

  4. J.-S. Zhou, W. B. Archibald, and J. B. Goodenough, Phys. Rev. B 61, 3196 (2000).

    Google Scholar 

  5. J.-S. Zhou, J. B. Goodenough, B. Dabrowski, P. W. Klamut, and Z. Bukowski, Phys. Rev. Lett. 84, 526 (2000).

    Google Scholar 

  6. I. H. Inoue, I. Hase, Y. Aiura, A. Fujimori, Y. Haruyama, T. Maruyama, and Y. Nishihara, Phys. Rev. Lett. 74, 2539 (1995).

    Google Scholar 

  7. J.-S. Zhou, W. Archibald, and J. B. Goodenough, Phys. Rev. B 57, R2017 (1998).

    Google Scholar 

  8. J.-S. Zhou, J. B. Goodenough, B. Dabrowski, P. W. Klamut, and Z. Bukowski, Phys. Rev. B 61, 4401 (2000).

    Google Scholar 

  9. J. L. García-Muñoz, P. Lacorre, and R. Cywinski, Phys. Rev. B 51, 15197 (1995).

    Google Scholar 

  10. J. B. Goodenough, J. Solid State Chem. 127, 126 (1996).

    Google Scholar 

  11. E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).

    Google Scholar 

  12. J. B. Goodenough, Phys. Rev. 100, 564 (1955).

    Google Scholar 

  13. J. Rodríguez-Carvajal, M. Hennion, F. Moussa, A. H. Moudden, L. Pinsard, and A. Revocolevschi, Phys. Rev. B 57, R3189 (1998).

    Google Scholar 

  14. G. H. Jonker, Physica (Amsterdam) 22, 707 (1956).

    Google Scholar 

  15. J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 60, R15002 (1999).

    Google Scholar 

  16. J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, Phys. Rev. 124, 373 (1961).

    Google Scholar 

  17. J. Töpfer and J. B. Goodenough, Eur. J. Solid State Inorg. Chem. 34, 481 (1997).

    Google Scholar 

  18. J.-S. Zhou, H. Q. Yin, and J. B. Goodenough (unpublished).

  19. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).

    Google Scholar 

  20. B. Dabrowski, X. **ong, Z. Bukowski, R. Dybzinski, P. W. Klamut, J. E. Siewenie, O. Chmaissem, J. Shaffer, C. W. Kimball, J. D. Jorgensen, and S. Short, Phys. Rev. B 60, 7006 (1999).

    Google Scholar 

  21. Y. Yamada, O. Hino, S. Nohdo, and R. Kanao, Phys. Rev. Lett. 77, 904 (1996).

    Google Scholar 

  22. J.-S. Zhou, J. B. Goodenough, A. Asamitsu, and Y. Tokura, Phys. Rev. Lett. 79, 3234 (1997).

    Google Scholar 

  23. T. Okuda, A. Asamitsu, Y. Tomioka, T. Kimura, Y. Taguchi, and Y. Tokura, Phys. Rev. Lett. 81, 3203 (1998).

    Google Scholar 

  24. J.-S. Zhou and J. B. Goodenough, Phys. Rev. B. 62, 3834 (2000).

    Google Scholar 

  25. J. B. Goodenough, Australian J. Phys. 52, 155 (1999).

    Google Scholar 

  26. J. B. Goodenough and J.-S. Zhou, MRS Symp. Proc. 474, 335 (1998).

    Google Scholar 

  27. C. Zener, Phys. Rev. 82, 403 (1951).

    Google Scholar 

  28. P.-G. de Gennes, Phys. Rev. 118, 141 (1960).

    Google Scholar 

  29. J. B. Goodenough, J. Appl. Phys. 81, 5330 (1997).

    Google Scholar 

  30. Y. Endoh, K. Hirota, S. Ishihara, S. Okamoto, Y. Murakami, A. Nishizawa, T. Fukuda, H. Kimura, H. Nojiri, K. Kaneko, and S. Maekawa, Phys. Rev. Lett. 82, 4328 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodenough, J.B., Zhou, JS. Localized-Itinerant and Mott–Hubbard Transitions in Several Perovskites. Journal of Superconductivity 13, 989–993 (2000). https://doi.org/10.1023/A:1026462510687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026462510687

Navigation