Log in

High activity of fatty acid oxidation enzymes in human placenta: Implications for fetal-maternal disease

  • Published:
Journal of Inherited Metabolic Disease

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

As the human fetus and placenta are considered to be primarily dependent on glucose oxidation for energy metabolism, the cause of the remarkable association between severe maternal pregnancy complications and the carriage of a fetus with an inborn error of mitochondrial long-chain fatty acid oxidation (FAO) has remained obscure. We analysed human term placenta and chorionic villus samples for the activities of a variety of enzymes involved in FAO, and compared the results with those obtained in human liver. All enzymes were found to be expressed, with a very high activity of two enzymes involved in the metabolism of long-chain fatty acids (CPT2 and VLCAD), whereas the activity of medium-chain acyl-CoA dehydrogenase (MCAD) was found to be low, when compared to liver. These results suggest that fatty acid oxidation may play an important role in energy generation in human placenta, and that a deficiency in the placental oxidation of long-chain FAO may result in placental dysfunction, thus causing gestational complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Braida L, Crovella S, Boniotto M, et al (2001) A rapid and quantitative mass spectrometry method for determining the concentration of acylcarnitines and aminoacids in amniotic fluid. Prenat Diagn 21: 543-546.

    Article  PubMed  CAS  Google Scholar 

  • Carter AM (2000) Placental oxygen consumption. Part I: in vivo studies a review. Placenta 21(supplement A): S31-S37.

    Article  PubMed  Google Scholar 

  • Chakrapani A, Olpin S, Cleary M, Walter JH, Wraith JE, Besley GT (2000) Trifunctional protein deficiency: three families with significant maternal hepatic dysfunction in pregnancy not associated with E474Q mutation. J Inherit Metab Dis 23: 826-834.

    Article  PubMed  CAS  Google Scholar 

  • den Boer MEJ, Wanders RJA, Morris AAM, IJlst L, Heymans HSA, Wijburg FA (2002a) Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: clinical presentation and follow-up of 50 patients. Pediatrics 109: 99-104.

    Article  PubMed  Google Scholar 

  • den Boer MEJ, Dionisi Vici C, Besley GTN, van Thuijl AOJ, Wanders RJA, Wijburg FA (2002b) MTP deficiency: a fatty acid oxidation disorder with a severe phenotype with prominent cardiac involvement. J Inherit Metab Dis 25(supplement 1): 75.

    Google Scholar 

  • Granger JP, Alexander BT, Llinas MT, Bennett WA, Khalil RA (2002) Pathophysiology of preeclampsia: linking placental ischemia/hypoxia with microvascular dysfunction. Microcirculation 9: 147-160.

    Article  PubMed  CAS  Google Scholar 

  • Harris RA, Farmer B, Ozawa T (1972) Inhibition of the mitochondrial adenine nucleotide transport system by oleyl-CoA. Arch Biochem Biophys 150: 199-209.

    Article  PubMed  CAS  Google Scholar 

  • Herrera E, Gomez Coronado D, Lasunci6n MA (1987) Lipid metabolism in pregnancy. Biol Neonate 51: 70-77.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann U Jr, Degiampietro P, Metzger E, Bachmann C, Peheim E (1985) Activities in the placenta and fetal membranes of enzymes involved in energy metabolism. Arch Gynecol 236: 249-254.

    Article  PubMed  CAS  Google Scholar 

  • Ibdah JA, Benett MJ, Rinaldo P, et al (1999a) A fetal fatty-acid oxidation disorder as a cause of liver disease in pregnant women. N Engl J Med 340: 1723-1731.

    Article  PubMed  CAS  Google Scholar 

  • Ibdah JA, Dasouki MJ, Strauss AW, et al (1999b) Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: variable expressivity of maternal illness during pregnancy and unusual presentation with infantile cholestasis and hypocalcaemia. J Inherit Metab Dis 22: 811-814.

    Article  PubMed  CAS  Google Scholar 

  • Innes AM, Seargent LE, Balachandra K, et al (2000) Hepatic carnitine palmitoyltransferase I deficiency presenting as maternal illness in pregnancy. Pediatr Res 47: 43-45.

    PubMed  CAS  Google Scholar 

  • Jones CT, Rolph TP (1985) Metabolism during fetal life: a functional assessment of metabolic development. Physiol Rev 65: 357-430.

    PubMed  CAS  Google Scholar 

  • Knipp GT, Liu B, Audus KL, Fujii H, Ono T, Soares MJ (2000) Fatty acid transport regu-latory proteins in the develo** rat placenta and in trophoblast cell culture models. Placenta 21: 367-375.

    Article  PubMed  CAS  Google Scholar 

  • Knopp RH, Herrera E, Freinkel N (1970) Carbohydrate metabolism in pregnancy. VIII. Metabolism of adipose tissue isolated from fed and fasted pregnant rats during late gestation. J Clin Invest 49: 1438-1446.

    Article  PubMed  CAS  Google Scholar 

  • Matern D, Schehata BM, Shekhawa P, Strauss AW, Bennett MJ, Rinaldo P (2001) Placental floor infarction complicating the pregnancy of a fetus with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency. Mol Genet Metab 72: 265-268.

    Article  PubMed  CAS  Google Scholar 

  • Meschia G, Battaglia FC, Hay WW, Sparks JW (1980) Utilization of substrates by the ovine placenta in vivo. Fed Proc 39: 245-249.

    PubMed  CAS  Google Scholar 

  • Moore KH, Dandurand DM, Kiechle FL (1992) Fasting induced alterations in mitochondrial palmitoyl-CoA metabolism may inhibit adipocyte pyruvate dehydrogenase activity. Int J Biochem 24: 809-814.

    Article  PubMed  CAS  Google Scholar 

  • Morel F, Laquin G, Lunardi J, Duszynski J, Vignais PV (1974) An appraisal of the functional significance of the inhibitory effect of long chain acyl-CoAs on mitochondrial transports. FEBS Lett 39: 133-138.

    Article  PubMed  CAS  Google Scholar 

  • Prip-Buus C, Pgorier JP, Duee PH, Kohl C, Girard J (1990) Evidence that the sensitivity of carnitine palmitoyl transferase I to inhibition by malonyl-CoA is an important site of regulation of hepatic fatty acid oxidation in the fetal and newborn rabbit. Perinatal devel-opment and effects of pancreatic hormones in cultured rabbit hepatocytes. Biochem J 269: 409 415.

    Google Scholar 

  • Rakheja D, Bennett MJ, Foster BM, Domiati-Saad R, Rogers BB (2002) Evidence for fatty acid oxidation in human placenta, and the relationship of fatty acid oxidation enzyme activi-ties with gestational age. Placenta 23: 447-450.

    Article  PubMed  CAS  Google Scholar 

  • Schoeman MN, Batey RG, Wilcken B (1991) Recurrent acute fatty liver of pregnancy associ-ated with fatty-acid oxidation defect in the offspring. Gastroenterology 100: 544-548.

    PubMed  CAS  Google Scholar 

  • Sims HF, Bracket JC, Powell CK, et al (1995) The molecular basis of pediatric long chain 3-hydroxyacyl-CoA dehydrogenase deficiency associated with maternal acute fatty liver of pregnancy. Proc Natl Acad Sci USA 92: 841-845.

    Article  PubMed  CAS  Google Scholar 

  • Slama A, Brivet M, Boutron A, Legrand A, Saudubray JM, Demaugre F (1996) Complementation analysis of carnitine palmitoyltransferase I and II defects. Pediatr Res 40: 542-546.

    PubMed  CAS  Google Scholar 

  • Treem WR, Rinaldo P, Hale DE, et al (1994) Acute fatty liver of pregnancy and long-chain 3-hydroxyacyl-coenzyme A deficiency. Hepatology 19: 339-345.

    Article  PubMed  CAS  Google Scholar 

  • Treem WR, Shoup ME, Hale DE, et al (1996) Acute fatty liver of pregnancy, hemolysis, elevated liver enzymes, and low platelets syndrome and long chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. Am J Gastroenterol 91: 2293-2300.

    PubMed  CAS  Google Scholar 

  • Tyni T, Ekholm E, Pihko H (1998) Pregnancy complications are frequent in long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. Am J Obstet Gynecol 178: 603-608.

    Article  PubMed  CAS  Google Scholar 

  • Van Wijk MJ, Nieuwland R, Boer K, van der Post JA, VanBavel E, Sturk A (2002) Microparticle subpopulations are increased in preeclampsia: possible involvement in vascular dysfunction? Am J Obstet Gynecol 187: 450-456.

    Article  Google Scholar 

  • Ventura FV, Ruiter JPN, IJlst L, de Almeida IT, Wanders RJA (1996) Inhibitory effect of 3-hydroxyacyl-CoAs and other long-chain fatty acid-oxidation intermediates on mitochondrial oxidative phosphorylation. J Inherit Metab Dis 19: 161-164.

    Article  PubMed  CAS  Google Scholar 

  • Wanders RJ, IJlst L, Poggi F, et al (1992) Human trifunctional protein deficiency: a new disorder of mitochondrial fatty acid beta-oxidation. Biochem Biophys Res Commun 188: 1139-1145.

    Article  PubMed  CAS  Google Scholar 

  • Wanders RJA, Vreken P, den Boer MEJ, Wijburg FA, van Gennip AH, IJlst L (1999) Dis-orders of mitochondrial fatty acyl-CoA 3-oxidation. J Inherit Metab Dis 22: 442-487.

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama Y, Sawa R, Suzuki S, et al (2002) Relationship between plasma malondialdehyde levels and adenosine deaminase activities in preeclampsia. Clin Chim Acta 322: 169-173.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oey, N.A., Den Boer, M.E.J., Ruiter, J.P.N. et al. High activity of fatty acid oxidation enzymes in human placenta: Implications for fetal-maternal disease. J Inherit Metab Dis 26, 385–392 (2003). https://doi.org/10.1023/A:1025163204165

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025163204165

Keywords

Navigation