Log in

Relationship between the Structural State of Water and the Character of Ion Hydration in Concentrated 1:1 Aqueous Solutions of Electrolytes in Extreme Conditions

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

It is suggested that the association parameter A be used as an indicator demonstrating the effect of extremal conditions on the structure of water in the series of solutions \(LiCl{\kern 1pt} \to {\kern 1pt} NaCl{\kern 1pt} \to {\kern 1pt} KCl\). Analysis of the diagrams “A parameter–external conditions” permitted us to establish that compression has a weak effect on association of water molecules in the systems, in which case the effect of the ion field on the mutual ordering of solvent molecules does not change. In conditions of strong compression in NaCl–H2O, positive hydration of Na+ changes to negative. On the contrary, at elevated temperatures, the probability of association of bulk water molecules increases and the effect of ions on the structure of the solvent decreases. Positive hydration of Li+ and negative hydration of K+ become less pronounced, and Na+ has no ordering effect on the structure of the solvent any longer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. Ya. Samoilov, Structure of Aqueous Solutions of Electrolytes and Ion Hydration [in Russian], USSR Academy of Sciences, Moscow (1957).

    Google Scholar 

  2. J. D. Bernal and R. H. Fowler, J. Chem. Phys., 1, 515–548 (1933).

    Google Scholar 

  3. E. Van Goldammer and H. G. Hertz, J. Phys. Chem., 74, 3734–3755 (1970).

    Google Scholar 

  4. K. J. Müller and H. G. Hertz, ibid., 102, 1256–1265 (1996).

    Google Scholar 

  5. O. Ya. Samoilov, Water and Aqueous Solutions, R. A. Horne (ed.), Wiley, New York (1972), p. 597.

    Google Scholar 

  6. P. S. Yastremskii and O. Ya. Samoilov, Zh. Strukt. Khim., 4, 844–849 (1963).

    Google Scholar 

  7. V. K. Abrosimov, Termodin. Stroen. Rast., No. 4, 75–83 (1976).

  8. G. A. Krestov and V. K. Abrosimov, Zh. Strukt. Khim., 5, 510–516 (1964).

    Google Scholar 

  9. A. F. Skryshevskii, Structural Analysis of Liquids and Amorphous Solids [in Russian], Vysshaya Shkola, Moscow (1980).

    Google Scholar 

  10. R. D. Oparin, M. V. Fedotova, and V. N. Trostin, Zh. Obshch. Khim., 68, 1625–1629 (1998).

    Google Scholar 

  11. R. D. Oparin, M. V. Fedotova, E. V. Vinogradov, and V. N. Trostin, VINITI dep. No. 414-B99, Moscow (1999).

  12. R. D. Oparin, M. V. Fedotova, and V. N. Trostin, Izv. Ross. Akad. Nauk, Ser. Khim., No. 10, 1881–1886 (1999).

  13. M. V. Fedotova and V. N. Trostin, Zh. Fiz. Khim., 73, 1047–1050 (1999).

    Google Scholar 

  14. R. D. Oparin, M. V. Fedotova, E. V. Vinogradov, and V. N. Trostin, VINITI dep. No. 16-B00, Moscow (2000).

  15. R. D. Oparin, M. V. Fedotova, and V. N. Trostin, Zh. Obshch. Khim., 70, 1779–1784 (2000).

    Google Scholar 

  16. R. D. Oparin, M. V. Fedotova, and V. N. Trostin, Zh. Fiz. Khim., 75, 873–878 (2001).

    Google Scholar 

  17. D. Chandler and H. C. Andersen, J. Chem. Phys., 57, 1930–1937 (1972).

    Google Scholar 

  18. M. K. Fedorov and V. I. Zarembo, Bulk Properties of Aqueous Solutions of Alkali Metal Halides with High Parameters of State [in Russian], Izd-vo Standartov, Moscow (1983).

    Google Scholar 

  19. N. A. Nevolina, O. Ya. Samoilov, and A. L. Seifer, Zh. Strukt. Khim., 10, 203–207 (1969).

    Google Scholar 

  20. O. Ya. Samoilov, A. L. Seifer, and N. A. Nevolina, ibid., 14, 360–361 (1973).

    Google Scholar 

  21. G. A. Krestov, Thermodynamics of Ion Processes in Solutions [in Russian], Khimiya, Leningrad (1984).

    Google Scholar 

  22. V. K. Abrosimov, Zh. Strukt. Khim., 14, 154–156 (1973).

    Google Scholar 

  23. M. Nakahara, T. Yamaguchi, and H. Ohtaki, Recent Res. Devel. Phys. Chem., 1, 17–49 (1997).

    Google Scholar 

  24. P. Jedlovszky, R. Vallauri, and J. Richardi, J. Phys.: Cond. Matter, 12, A115-A122 (2000).

    Google Scholar 

  25. H. Ohtaki, T. Radnai, and T. Yamaguchi, Chem. Soc. Rev., 26, 41–51 (1997).

    Google Scholar 

  26. A. G. Kalinichev and T. D. Bass, J. Phys. Chem., 101, 9720–9727 (1997).

    Google Scholar 

  27. Yu. E. Gorbaty and A. G. Kalinichev, ibid., 99, 5336–5340 (1995).

    Google Scholar 

  28. A. G. Kalinichev and Yu. E. Gorbatyi, Experimental and Theoretical Modeling of Mineral Formation Processes [in Russian], Nauka, Moscow (1998).

    Google Scholar 

  29. S. V. Churakov and A. G. Kalinichev, Zh. Strukt. Khim., 40, 673–680 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oparin, R.D., Fedotova, M.V. & Trostin, V.N. Relationship between the Structural State of Water and the Character of Ion Hydration in Concentrated 1:1 Aqueous Solutions of Electrolytes in Extreme Conditions. Journal of Structural Chemistry 43, 467–472 (2002). https://doi.org/10.1023/A:1020393217332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020393217332

Keywords

Navigation