Log in

Brief Communication: Role of Nuclear Background and in vivo Environment in Variable Segregation Behavior of the Aging-Dependent T414G Mutation at Critical Control Site for Human Fibroblast mtDNA Replication

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Previous work had shown a large accumulation (up to 50% of mtDNA) of a noninherited T414G transversion at a critical control site for mtDNA replication in skin fibroblasts from the majority of human subjects above 65 years old, and its absence in younger individuals. In the present studies, long-term in vitro culture of several fibroblasts populations carrying the heteroplasmic T414G mutation revealed an outgrowth of the mutant cells by wild-type cells. This observation supported the previous conclusion that the mutation accumulation is an in vivo phenomenon, while, at the same time, indicating intrinsic physiological differences between mutant and wild-type cells. Furthermore, subcloning experiments revealed a striking mosaic distribution of the mutation in the original fibroblasts populations, as shown by its presence, in heteroplasmic or homoplasmic form, in a fraction (18–32%) of the fibroblasts, and its absence in the others. In other investigations, transfer of mitochondria from mutation-carrying fibroblasts into mtDNA-less 143B.TKρ0 206 cells revealed the persistence of the mosaic distribution of the mutation, however, with a near-complete shift to homoplasmy. The generality of the latter phenomenon would exclude a founder effect by one or few mitochondria in the transformation experiments, and would rather point to the important role of the nuclear background in the in vitro behavior of the T414G mutation. The stability of the homoplasmic mutation in ρ0 cell transformants provides a powerful tool for analyzing its biochemical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

LITERATURE CITED

  1. Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G., and Attardi, G. (1999). Science 286:774–779.

    Google Scholar 

  2. Wang, Y., Michikawa, Y., Mallidis, C., Bai, Y., Woodhouse, L., Miller, C.A., Askanas, V., King Engel, W., Bhasin, S., and Attardi, G. (2001). Proc. Natl. Acad. Sci. U.S.A. 98:4022–4027.

    Google Scholar 

  3. Pulkes, T., Siddiqui, A., Morgan-Hughes, J.A., and Hanna, M.G. (2000). Neurology 55:1210–1212.

    Google Scholar 

  4. Cristofalo, V.J., and Charpentier, R. (1991). J. Tissue Culture Meth. 6:117–121.

    Google Scholar 

  5. Hofhaus, G., and Attardi, G. (1995). Mol. Cell. Biol. 15:964–974.

    Google Scholar 

  6. Michikawa, Y., and Attardi, G. (2002). In Methods in Molecular Biology, vol. 197: Mitochondrial DNA: Methods and Protocols,W. C. Copeland (ed.), Humana Press, Clifton, NJ, pp. 75–92.

    Google Scholar 

  7. Laderman, K.A., Penny, J.R., Mazzuccheli, F., Bresolin, N., Scarlato, G., and Attardi, G. (1996). J. Biol. Chem. 271:15891–15897.

    Google Scholar 

  8. Falanga, V., and Kirsner, R.S. (1993). J. Cell. Physiol. 154:506–510.

    Google Scholar 

  9. Yoneda, M., Miyatake, T., and Attardi, G. (1994). Mol. Cell. Biol. 14:2699–2712.

    Google Scholar 

  10. Müller-Höcker, J. (1989). Am. J. Pathol. 134:1167–1173.

    Google Scholar 

  11. Müller-Höcker, J. (1990). J. Neurol. Sci. 100:14–21.

    Google Scholar 

  12. Müller-Höcker, J. (1992). Brain Pathol. 2:149–158.

    Google Scholar 

  13. Müller-Höcker, J., Seibel, P., Schneiderbanger, K., and Kadenbach, B. (1993). Virchow's Arch. Pathol. Anat. 422:7–15.

    Google Scholar 

  14. Wanagat, J., Cao, Z., Pathare, P., and Aiken, J.M. (2001). FASEB J. 15:322–332.

    Google Scholar 

  15. Khrapko, K., Bodyak, N., Thilly, W.G., van Orsouw, N.J., Zhang, X., Coller, H.A., Perls, T.T., Upton, M., Vijg, J., and Wei, J.Y. (1999). Nucl. Acids Res. 27:2434–2441.

    Google Scholar 

  16. Reuven, N.B., Tomer, G., and Livneh, Z. (1998). Mol. Cell 2:191.

    Google Scholar 

  17. Gibbs, P.E.M., McGregor, W.G., Maher, V.M., Nisson, P., and Lawrence, C.W. (1998). Proc. Natl. Acad Sci. U.S.A. 95:6876–6880.

    Google Scholar 

  18. Chinnery, P.F., and Samuels, D.C. (1999). Am. J. Hum. Genet. 64:1158–1165.

    Google Scholar 

  19. Elson, J.L., Samuels, D.C., Turnbull, D.M., and Chinnery, P.F. (2001). Am. J. Hum. Genet. 68:802–806.

    Google Scholar 

  20. Coller, H.A., Khrapko, K., Bodyak, N.D., Nekhaeva, E., Herrero-Jimenez, P., and Thilly, W.G. (2001). Nat. Genet. 28:147–150.

    Google Scholar 

  21. Flory, P.J., Jr., and Vinograd, J. (1973). J. Mol. Biol. 74:81–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michikawa, Y., Laderman, K., Richter, K. et al. Brief Communication: Role of Nuclear Background and in vivo Environment in Variable Segregation Behavior of the Aging-Dependent T414G Mutation at Critical Control Site for Human Fibroblast mtDNA Replication. Somat Cell Mol Genet 25, 333–342 (1999). https://doi.org/10.1023/A:1019972500785

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019972500785

Navigation