Log in

Identification and validation of metastasis-associated proteins in head and neck cancer cell lines by two-dimensional electrophoresis and mass spectrometry

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Despite improvements in treatment of patients with head and neck squamous cell carcinoma (HNSCC) over the last two decades, the survival rate of these patients has not increased significantly. One of the major factors in the poor outcome of the disease is regional metastasis. To better understand the mechanisms of this process at the protein level, we performed two-dimensional electrophoresis (2-DE) and mass spectrometry using SELDI ProteinChip technology to identify proteins differentially expressed in two HNSCC cell lines, UMSCC10A and UMSCC10B, from the same patient. UMSCC10A was derived from the primary tumor and UMSCC10B from a metastatic lymph node. The differentially expressed proteins were excised from the gels. Following in-gel digestion by trypsin, mass profiles of the peptides were generated. Proteins were identified by submitting the peptide mass profiles to a public available NCBInr databases (www.proteometrics.com). Two membrane-associated proteins, annexin I and annexin II, and glycolytic protein enolase-α were found to be upregulated, and calumenin precursor down-regulated, in metastatic cell line UMSCC10B. The identity of these proteins was confirmed by analyzing additional peptide mass fingerprints obtained by endoproteinase lysine-C digestion. The results were also validated by Western blotting analysis. Our results showed that enolase-α, annexin-I and annexin-II might be important molecules in head and neck cancer invasion and metastasis. The results also suggest an important complementary role for proteomics in identification of molecular abnormalities important in cancer development and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenlee RT, Murray T, Bolden S et al. Wingo PS. Cancer Statistics, 2000. CA Cancer J Clin2000;50:7–33.

    PubMed  CAS  Google Scholar 

  2. Pandey A, Mann M. Proteomics to study genes and genomes (Review). Nature 2000;405(6788):837–46.

    Article  PubMed  CAS  Google Scholar 

  3. Alaiya AA, Franzen B, Auer G et al. Cancer proteomics: from identification of novel markers to creation of artifical learning models for tumor classification (Review).Electrophoresis2000;21(6): 1210–7.

    Article  PubMed  CAS  Google Scholar 

  4. Dutt MJ, Lee KH. Proteomic analysis(Review).Curr Opin Biotechnol. 2000;11(2):176–9.

    Article  PubMed  CAS  Google Scholar 

  5. Lahm HW, Langen H.Mass spectrometry: A tool for the identification of proteins separated by gels (Review).Electrophoresis2000;21(11): 1210–7.

    Article  Google Scholar 

  6. Celis JE, Celis P, Ostergaard M et al. Proteomics and immunohistochemistry define some of the steps involved in the squamous differentiation of the bladder transitional epithelium: a novel strategy for identifying metaplastic lesions.Cancer Res1999;59(12):3003–9.

    PubMed  CAS  Google Scholar 

  7. Ostergaard M, Wolf H, Orntoft TF et al.Psoriasin (S100A7): a putative urinary marker for the follow-up of patients with bladder squamous cell carcinomas.Electrophoresis1999;20(2):349–54.

    Article  PubMed  CAS  Google Scholar 

  8. Celis JE, Wolf H, Ostergaard M. Bladder squamous cell carcinoma biomarkers derived from proteomics.Electrophoresis2000;21(11): 2115–21.

    Article  PubMed  CAS  Google Scholar 

  9. Page MJ, Amess B, Townsend RR et al. Proteomic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties.Proc Natl Acad Sci USA1999;96(22): 12589–94.

    Article  PubMed  CAS  Google Scholar 

  10. Sarto C, Marocchi A, Sanchez JC et al. Renal cell carcinoma and normal kidney protein expression.Electrophoresis1997;18(3–4): 599–604.

    Article  PubMed  CAS  Google Scholar 

  11. Franzen B, Linder S, Alaiya AA et al. Analysis of polypeptide expression in benign and malignant human breast lesions: Down-regulation of cytokeratins.Br J Cancer1996;74(10):1632–8.

    PubMed  CAS  Google Scholar 

  12. Chuman Y, Bergman A, Ueno T et al. Napsin A, a member of the aspartic protease family, is abundantly expressed in normal lung and kidney tissue and is expressed in lung adenocarcinomas.FEBS Lett 1999;462(1–2):129–134.

    Article  PubMed  CAS  Google Scholar 

  13. Alaiya AA, Franzén B, Moberger B Two-dimensional gel analysis of protein expression in ovarian tumors shows a low degree of intratumoral heterogeneity.Electrophoresis1999;20(4–5):1039–46.

    Article  PubMed  CAS  Google Scholar 

  14. Von Eggeling F, Davies H, Lomas L et al. Tissue-specific microdissection coupled with ProteinChip array technologies: Applications in cancer research.BioTechniques2000;29:1066–70.

    PubMed  CAS  Google Scholar 

  15. Neuhoff V, Arold N, Taube D et al. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250.Electrophoresis1988;9:255–62.

    Article  PubMed  CAS  Google Scholar 

  16. Moss SE. The Annexins.London: Portland Press 1992;1–10.

    Google Scholar 

  17. Raynal P, Pollard HB. Annexins: The problem of assessing the biological role for a gene family of multifunctional calcium-and phospholipid-binding proteins.Biochim Biophys Acta1994;1197(1): 63–93.

    PubMed  CAS  Google Scholar 

  18. Rhee HJ, Kim GY, Huh JW et al. Annexin I is a stress protein induced by heat, oxidative stress and a sulfhydryl-reactive agent.Eur J Biochem 2000;267(11):3220–5.

    Article  PubMed  CAS  Google Scholar 

  19. Benz J, Hofmann A. Annexins: From structure to function.Biol Chem 1997;378(3–4):177–83.

    PubMed  CAS  Google Scholar 

  20. Pencil SD, Toh Y, Nicolson GL. Candidate metastasis-associated genes of the rat 13762NF mammary adenocarcinoma.Breast Cancer Res Treat1993;25(2):165–74.

    Article  PubMed  CAS  Google Scholar 

  21. Pencil SD, Toth M. Elevated levels of annexin I protein in vitro and in vivo in rat and human mammary adenocarcinoma.Clin Exp Metastasis1998; 16(2):113–21.

    Article  PubMed  CAS  Google Scholar 

  22. Sinha P, Hutter G, Kottgen E et al. Increased expression of annexin I and thioredoxin detected by two-dimensional gel electrophoresis of drug-resistant human stomach cancer cells.J Biochem Biophys Methods1998;37(3):105–16.

    Article  PubMed  CAS  Google Scholar 

  23. Koseki H, Shiiba K, Suzuki Y et al. Enhanced expression of lipocortin-1 as a new immunosuppressive protein in cancer patients and its influence on reduced in vitro peripheral blood lymphocyte response to mitogens.Surg Today1997;27(1):30–9.

    Article  PubMed  CAS  Google Scholar 

  24. Mai J, Waisman DM, Sloane BF. Cell surface complex of cathepsin B/annexin II tetramer in malignant progression.Biochim Biophys Acta2000;1477(1–2):215–30.

    PubMed  CAS  Google Scholar 

  25. Hajjar KA, Acharya SS. Annexin II and regulation of cell surface fibrinolysis.Ann NY Acad Sci2000;902:265–71.

    Article  PubMed  CAS  Google Scholar 

  26. Siever DA, Erickson HP. Extracellular annexin II.Int J Biochem Cell Biol1997;29(11):1219–23.

    Article  PubMed  CAS  Google Scholar 

  27. Mai J, Finley RL Jr, Waisman DM et al. Human procathepsin B interacts with the annexin II tetramer on the surface of tumor cells.J Biol Chem2000; 275(17):12806–12.

    Article  PubMed  CAS  Google Scholar 

  28. Fitzpatrick SL, Kassam G, Choi KS et al. Regulation of plasmin activity by annexin II tetramer.Biochemistry2000;39(5):1021–8.

    Article  PubMed  CAS  Google Scholar 

  29. Kassam G, Choi KS, Ghuman J et al. Waisman DM. The role of annexin II tetramer in the activation of plasminogen. J Biol Chem1998; 273(8):4790–9.

    Article  PubMed  CAS  Google Scholar 

  30. Hajjar KA, Krishnan S. Annexin II: A mediator of the plasmin/ plasminogen activator system.Trends Cardiovasc Med 1999; 9(5):128–38.

    Article  PubMed  CAS  Google Scholar 

  31. Kang HM, Choi KS, Kassam G et al.Role of annexin II tetramer in plasminogen activation.Trends Cardiovasc Med 1999;9(3–4):92–102.

    Article  PubMed  CAS  Google Scholar 

  32. Paciucci R, Tora M, Diaz VM et al. The plasminogen activator system in pancreas cancer: Role of t-PA in the invasive potential in vitro. Oncogene1998;16(5):625–33.

    Article  PubMed  CAS  Google Scholar 

  33. Vishwanatha JK, Chiang Y, Kumble KD et al. Enhanced expression of annexin II in human pancreatic carcinoma cells and primary pancreatic cancers.Carcinogenesis 1993;14(12):2575–9.

    PubMed  CAS  Google Scholar 

  34. Yeatman TJ, Updyke TV, Kaetzel MA et al. Expression of annexins on the surfaces of non-metastatic and metastatic human and rodent tumor cells.Clin Exp Metastasis1993; 11(1):37–44.

    Article  PubMed  CAS  Google Scholar 

  35. Choi KS, Ghuman J, Kassam G et al. Annexin II tetramer inhibits plasmin-dependent fibrinolysis.Biochemistry1998;37(2):648–55.

    Article  PubMed  CAS  Google Scholar 

  36. Wirl G, Schwartz-Albiez R. Collagen-binding proteins of mammary epithelial cells are related to Ca2(+)-and phospholipid-binding annexins.J Cell Physiol1990; 144(3):511–22.

    Article  PubMed  CAS  Google Scholar 

  37. Chung CY, Erickson HP. Cell surface annexin II is a high affinity receptor for the alternatively spliced segment of tenascin-C.J Cell Biol1994;126(2):539–48.

    Article  PubMed  CAS  Google Scholar 

  38. Kassam G, Le BH, Choi KS et al. The p11 subunit of the annexin II tetramer plays a key role in the stimulation of t-PA-dependent plasminogen activation.Biochemistry1998;37(48):16958–66.

    Article  PubMed  CAS  Google Scholar 

  39. Jost M, Gerke V. Map** of a regulatory important site for protein kinase C phosphorylation in the N-terminal domain of annexin II. Biochim Biophys Acta1996; 1313(3):283–9.

    Article  PubMed  Google Scholar 

  40. Semenza GL, Jiang BH, Leung SW et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 1996;271(51):32529–37.

    Article  PubMed  CAS  Google Scholar 

  41. Minet E, Michel G, Remacle J et al. Role of HIF-1 as a transcription factor involved in embryonic development, cancer progression and apoptosis (Review).Int J Mol Med.2000; 5(3):253–9.

    PubMed  CAS  Google Scholar 

  42. Zhong H, De Marzo AM, Laughner E et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases.Cancer Res1999; 59(22):5830–5.

    PubMed  CAS  Google Scholar 

  43. Redlitz A, Fowler BJ, Plow EF et al. The role of an enolase-related molecule in plasminogen binding to cells.Eur J Biochem1995; 227(1–2):407–15.

    Article  PubMed  CAS  Google Scholar 

  44. Miles LA, Dahlberg CM, Plescia J et al. Role of cell-surface lysines in plasminogen binding to cells: Identification of alpha-enolase as a candidate plasminogen receptor.Biochemistry 1991;30(6):1682–91.

    Article  PubMed  CAS  Google Scholar 

  45. Honore B, Vorum H. The CREC family, a novel family of multiple EFhand, low-affinity Ca(2+)-binding proteins localized to the secretory pathway of mammalian cells.FEBS Lett2000;466(1):11–8.

    Article  PubMed  CAS  Google Scholar 

  46. Liu Z, Brattain MG, Appert H. Differential display of reticulocalbin in the highly invasive cell line, MDA-MB-435, versus the poorly invasive cell line, MCF-7.Biochem Biophys Res Commun1997;231(2): 283–9.

    Article  PubMed  CAS  Google Scholar 

  47. Chen JJ, Reid CE, Band V et al. Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein.Science 1995; 269(5223): 529–31.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Wu.

About this article

Cite this article

Wu, W., Tang, X., Hu, W. et al. Identification and validation of metastasis-associated proteins in head and neck cancer cell lines by two-dimensional electrophoresis and mass spectrometry. Clin Exp Metastasis 19, 319–326 (2002). https://doi.org/10.1023/A:1015515119300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015515119300

Navigation