Log in

High Precision Constrained Gras** with Cooperative Adaptive Handcontrol

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

A method for high precision constrained object manoeuvering for non-redundant rigid multifinger hands is proposed. A passivity-based adaptive cooperative control scheme carries out compensation of all uncertain inertial and dynamic friction forces to guarantee asymptotic tracking of all contact forces and joint position-orientation trajectories over orthogonal force- and position-based impedance error manifolds. Optimal internal and external force trajectories are obtained to minimize the contact forces onto the constrained object while exerting a given desired contact force onto the environment. The simulation study of two robot fingers manipulating a constrained object for combined fast and slow velocity regimes shows that when the dynamic friction compensation is turned on tracking errors decrease tenfold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akella, P., Parra-Vega, V., Arimoto, S., and Tanie, K.: 1994, Discontinuous model-based adaptive control for fingers executing free and constrained tasks, in: Proc. of IEEE Internat. Conf. on Robotics and Automation.

  • Arimoto, S.: 1987, Cooperative motion control of multirobot arms or fingers, in: Proc. of IEEE Internat. Conf. on Robotics and Automation.

  • Ascher, U. and Petzold, L. R.: 1971, Projected implicit Runge-Kutta methods for differentialalgebraic equations, SIAM J. Numer. Anal. 28, 1097-1120.

    Google Scholar 

  • Buss, M., Hashimoto, H., and Moore, J. B.: 1996, Dextrous hand gras** force optimization, IEEE Trans. Robotics Automat. 12(3), 406-418.

    Google Scholar 

  • Canudas de Wit, C., Olsson, H., and Astrom, K. J.: 1995, A new method for control of systems with friction, IEEE Trans. Automat. Control 40(3), 419-425.

    Google Scholar 

  • Canudas-de-Wit, C.: 1998, Comments on “A new model for control of systems with friction”, IEEE Trans. Automat. Control 43(8), 1189-1190.

    Google Scholar 

  • Krishnan, H. and McClamroch, N. H.: 1994, Tracking in nonlinear differential-algebraic control systems with applications to constrained robot systems, Automatica 30(12), 1885-1897.

    Google Scholar 

  • Liu, Y. H. and Arimoto, S.: 1996, Distributively controlling two robots handling an object in the task space without any communication, IEEE Trans. Automat. Control 41(8), 1193-1198.

    Google Scholar 

  • Liu, Y. H., Arimoto, S., Kitagaki, S., and Parra-Vega, V.: 1997, Model-based adaptive and distributed controller for holonomic cooperations of multiple manipulators, Internat. J. Control 67(5), 649-673.

    Google Scholar 

  • Markenscoff, X., Ni, L., and Papadimitriou, C. H.: 1990, The geometry of gras**, Internat. J. Robotics Res. 9(1), 61-74.

    Google Scholar 

  • Myshkin, N. K., Petrokovets, M. I., and Chizik, S. A.: 1998, Simulation of real contact in tribology, Tribology Internat. 31(1-3), 79-83.

    Google Scholar 

  • Ortega, R., Loria, A, Nicklasson, P., and Sira-Ramrez, H.: 1998, Passivity based control of Euler-Lagrange systems: Applications to electrical and electromechanical systems, Communications and Control Engineering Series, Springer, Berlin.

    Google Scholar 

  • Panteley, E., Ortega, R., and Gäfvert, M.: 1998, An adaptive friction compensator for global tracking in robot manipulators, Systems Control Lett. 33(5), 307-313.

    Google Scholar 

  • Parra-Vega, V.: 1998, Modeling and control of nonlinear friction of machine tools for high precision servocontrollers: Report #1, Project ITIT Advanced Motion Control for Machine Tools, November 1998.

  • Reference Manual, 1997, 20-sim 2.1, Control Laboratory, University of Twente.

  • Rimon, E. and Burdick, J.: 1986, On force and form closure for multiple finger grasps, in: Proc. of IEEE Internat. Conf. on Robotics and Automation.

  • Sadegh, N. and Horowitz, R.: 1990, Stability and robustness of adaptive controllers for robotic manipulators, Internat. J. Robotics Res. 9(3), 74-92.

    Google Scholar 

  • Slotine, J. J. E. and Li, W.: 1987, On the adaptive control of robot manipulators, Internat. J. Robotics Res. 6(3), 49-59.

    Google Scholar 

  • Tarn, T. J., Bejczy, A., and Yuan, X.: 1987, Design of dynamic control of two cooperating robots arms: closed chain formulation, in: Proc. of IEEE Internat. Conf. on Robotics and Automation.

  • **, Internat. J. Robotics Res. 18(9), 951-958.

    Google Scholar 

  • Zheng, Y. F. and Luh, J. Y. S.: 1988, Optimal load distribution for two industrial robots handling a single object, in: Proc. of IEEE Internat. Conf. on Robotics and Automation.

  • Zibri, M., Loulin, H., and Piu, Ch. S.: 1999, Position and force control of two constrained robotic manipulators, J. Intell. Robotic Systems 24, 1-22.

    Google Scholar 

  • Zuo, B. R. and Qian, W. H.: 1999, On the equivalence of internal and interaction forces in multifingered gras**, IEEE Trans. Robotics Automat. 15(5), 934-940.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parra-Vega, V., Rodríguez-Angeles, A., Arimoto, S. et al. High Precision Constrained Gras** with Cooperative Adaptive Handcontrol. Journal of Intelligent and Robotic Systems 32, 235–254 (2001). https://doi.org/10.1023/A:1013987209547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013987209547

Navigation