Log in

Fundamental Concepts of Classical Chaos. Part II: Fractals and Chaotic Dynamics

  • Published:
Open Systems & Information Dynamics

Abstract

With the concepts of fractals, introduced by B. B. Mandelbrot in the 1970s, geometry assumes again, after Poincaré, a leading role in the theory of dynamical systems and chaos. Dynamical instability and unpredictability in time become inseparable from geometrical complexity and irregularity in space, through self-similarity under scaling. Chaos theory thus acquires its natural setting and description in terms of fractal geometry and symbolic dynamics. Objects of non-integer dimension and distributions with spectra of generalized dimensions become familiar concepts of aesthetic, even philosophical value, while giving researchers at the same time new tools to probe deeper into complex natural phenomena. In this paper, I review in a pedagogical way the main ideas of fractal geometry, multifractal distributions and symbolic dynamics. Of central importance is the connection between temporal and spatial complexity, while important applications of the formalism are also mentioned, particularly in the area of chaotic time series analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. D. Arrowsmith, C. N. Place, Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  2. M. Barnsley, Fractals Everywhere, Academic Press, Boston, 1988.

    Google Scholar 

  3. A. Bezerianos, T. Bountis, G. Papaioannou, and P. Polydoropoulos, Chaos 5(1), 95 (1995).

    Google Scholar 

  4. T. Bountis, L. Karakatsanis, G. Papaioannou, and G. Pavlos, Ann. Geophys. 11, 947 (1993).

    Google Scholar 

  5. T. Bountis, Fundamental Concepts of Classical Chaos, Part I, Information Dyn. Open Sys. 3, 23 (1995).

    Google Scholar 

  6. G. Casati and B. Chirikov, Quantum Chaos, Oxford University Press, Oxford, 1995.

    Google Scholar 

  7. K. J. Falconer, Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  8. A. M. Fraser and H. L. Swinney, Phys. Rev. A 33, 1134 (1986).

    Google Scholar 

  9. P. Grassberger, J. Stat. Phys. 19, 25 (1981).

    Google Scholar 

  10. P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1985).

    Google Scholar 

  11. J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems and Vector Fields, Springer, New York, 1983.

    Google Scholar 

  12. H. G. E. Hentchel and I. Procaccia, Physica 8 D, 435 (1983).

    Google Scholar 

  13. J. Hutchinson, Indiana Univ. J. Math. 30, 713 (1981).

    Google Scholar 

  14. A. Karytinos and G. Papaioannou, Int. J. Bifurc. Chaos 5(6), 1557 (1995).

    Google Scholar 

  15. B. B. Mandelbrot, The Fractal Geometry of Nature, also, 1982, Fractals: Form, Chance and Dimension, Freeman, New York.

    Google Scholar 

  16. J. Moser, Stable and Random Motions, Princeton University Press, Princeton, 1973.

    Google Scholar 

  17. J. S. Nicolis, Dynamics of Hierarchical Systems: An Evolutionary Approach, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  18. G. Nicolis and I. Prigogine, Exploring Complexity, Freeman, New York, 1989.

    Google Scholar 

  19. G. Pavlos, L. Karakatsanis, J. Latoussakis, D. Dialetis, and G. Papaioannou, Int. J. Bifurc. Chaos 4(1), 87 (1993).

    Google Scholar 

  20. H.-O. Peitgen, H. Jurgens, and D. Saupe, Fractals for the Classroom, vol. 1, Springer, New York, 1992.

    Google Scholar 

  21. S. N. Rasband, Chaotic Dynamics of Nonlinear Systems, Wiley-Interscience, New York, 1990.

    Google Scholar 

  22. A. Renyi, Probability Theory, North Holland, Amsterdam, 1970.

    Google Scholar 

  23. M. Schroeder, Fractals, Chaos and Power Laws, Freeman, New York, 1991.

    Google Scholar 

  24. H.-G. Schuster, Deterministic Chaos, 2nd ed., VCH, Weinheim, 1988.

    Google Scholar 

  25. S. Smale, Differentiable Dynamical Systems, Bull. Amer. Math. Soc. 73, 747 (1967).

    Google Scholar 

  26. F. Takens, Lecture Notes in Math. 898. Springer, Berlin, p. 366, 1981.

    Google Scholar 

  27. S. Wiggins, Introduction to Applied Dynamical Systems and Chaos, Springer, New York, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bountis, T. Fundamental Concepts of Classical Chaos. Part II: Fractals and Chaotic Dynamics. Open Systems & Information Dynamics 4, 281–322 (1997). https://doi.org/10.1023/A:1009690504708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009690504708

Keywords

Navigation