Log in

Genetic diversity of North American and Old World Saccharum assessed by RAPD analysis

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Saccharum (= Erianthus) native to North America is an untapped germplasm for genetic improvement of sugarcane (Saccharum spp. hybrids). There are five species and two varieties native to North America: S. alopecuroideum, S. baldwinii, S. brevibarbe vars. brevibarbe and contortum, S. coarctatum, and S. giganteum. There are three cytotypes of S. giganteum (2n = 30, 60, 90), and they overlap in gross morphology. Our objectives were to compare genetic diversity of North American and Old World members of Saccharum. Bulked DNA for five North American species, three Old World Erianthus spp. sect. Ripidium clones, and five sugarcane cultivars was tested by PCR with 13 RAPD primers. A total of 283 repeatable RAPD bands was scored for the nine taxa. Genetic distance coefficients ranged from 0.365 to 0.767 indicating substantial diversity among taxa. Taxa were assigned to one of three cluster groups: 1) S. baldwinii, S. brevibarbe var. contortum, S. coarctatum, and S. giganteum 2n = 90; 2) S. gig anteum 2n = 30 and 2n = 60, S. alopecuroideum, and sugarcane cultivars; and 3) Old World Erianthus spp. The RAPD analysis indicated that sugarcane was genetically more similar to North American Saccharum than it was to Old World Erianthus. This was unexpected given that North American Saccharum is geographically, cytologically, morphologically, and possibly reproductively isolated from Old World Erianthus and sugarcane. The data support the taxonomic separation of cytotypes of S. giganteum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Al-Janabi, S.M., M. McClelland, C. Petersen & B.W.S. Sobral, 1994. Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theor. Appl. Genet. 88: 933–944.

    Google Scholar 

  • Berding, N. & B.T. Roach, 1987. Germplasm collection, maintenance, and use. In: D.J. Heinz (Ed.), Sugarcane improvement through breeding, Elsevier, New York, pp. 143–210.

    Google Scholar 

  • Burner, D.M., 1991. Cytogenetic analyses of sugarcane relatives (Andropogoneae: Saccharinae). Euphytica 54: 125–133.

    Google Scholar 

  • Burner, D.M., M.P. Grisham & B.L. Legendre, 1993. Resistance of sugarcane relatives injected with Ustilago scitaminea.PlantDis. 77: 1221–1223.

    Google Scholar 

  • Burner, D.M. & B.L. Legendre, 1994. Cytogenetic and fertility characteristics of elite sugarcane clones. Sugar Cane 1994(1): 6–10.

    Google Scholar 

  • Burner, D.M. & R.D. Webster, 1994. Cytological studies on North American species of Saccharum (Poaceae: Andropogoneae). SIDA 16: 233–244.

    Google Scholar 

  • Catalán, P., Y. Shi, L. Armstrong, J. Draper & C.A. Stace, 1995. Molecular phylogeny of the genus Brachypodium P. Beauv. based on RFLP and RAPD analysis. Bot. J. Linn. Soc. 117: 263–280.

    Google Scholar 

  • Celarier, R.P., 1956. Additional evidence for five as a basic number of the Andropogoneae. Rhodora 58: 135–143.

    Google Scholar 

  • D'Hont, A., Y.H. Lu, P. Feldmann & J.C. Glaszmann, 1993. Cytoplasmic diversity in sugar cane revealed by heterologous probes. Sugar Cane 1993(1): 12–15.

    Google Scholar 

  • D'Hont, A., P.S. Rao, P. Feldmann, L. Grivet, N. Islam-Faridi, P. Taylor & J.C. Glaszmann, 1995. Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theor. Appl. Genet. 91: 320–326.

    Google Scholar 

  • Da Silva, J.A.G., M.E. Sorrells, W.L. Burnquist & S.D. Tanksley, 1993. RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36: 782–791.

    Google Scholar 

  • Daniels, J. & B.T. Roach, 1987. Taxonomy and evolution. In D.J. Heinz (Ed.), Sugarcane improvement through breeding, Elsevier, New York, pp. 7–84.

    Google Scholar 

  • Fritsch, P., M.A. Hanson, C.D. Spore, P.E. Pack & L.H. Rieseberg, 1993. Constancy of RAPD primer amplification strength among distantly related taxa of flowering plants. Plant Molec. Biol. Rep. 11: 10–20.

    Google Scholar 

  • Gang, D.R. & D.J. Weber, 1995. Genetic variability and relationships among ten populations of rubber rabbitbrush (Chrysothamnus nauseosus ssp. hololeucus) determined by RAPD analysis of bulked genomic DNA samples. Bot. Bull. Acad. Sin. 36: 1–8.

    Google Scholar 

  • Gill, B.S. & C.O. Grassl, 1986. Pathways of genetic transfer in intergeneric hybrids of sugar cane. Sugar Cane 1986(2): 2–7.

    Google Scholar 

  • Grisham, M.P., D.M. Burner & B.L. Legendre, 1992. Resistance to the H strain of sugarcane mosaic virus among wild forms of sugarcane and relatives. Plant Dis. 76: 360–362.

    Google Scholar 

  • Harlan, J.R. & J.M.J. de Wet, 1975. On ¨ O Winge and a prayer: the origins of polyploidy. Bot. Rev. 41: 361–390.

    Google Scholar 

  • Hilu, K.W., 1995. Evolution of finger millet: evidence from random amplified polymorphic DNA. Genome 38: 232–238.

    Google Scholar 

  • Joshi, C.P. & H.T. Nguyen, 1993. Application of random amplified polymorphic DNA technique for the detection of polymorphism among wild and cultivated tetraploid wheats. Genome 36: 602–609.

    Google Scholar 

  • Ko, H.L., D.C. Cowan, R.J. Henry, G.C. Graham, A.B. Blakeney & L.G. Lewin, 1994. Random amplified polymorphic DNA analysis of Australian rice (Oryza sativa L.) varieties. Euphytica 80: 179–189.

    Google Scholar 

  • Lu, Y.H., A. D'Hont, D.I.T. Walker, P.S. Rao, P. Feldmann & J.C. Glaszmann, 1994. Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 78: 7–18.

    Google Scholar 

  • McDonald, M.B., L.J. Elliot & P.M. Sweeney, 1994. DNA extraction from dry seeds for RAPD analyses in varietal identification studies. Seed Sci. Technol. 22: 171–176.

    Google Scholar 

  • Mukherjee, S.K., 1957. Origin and distribution of Saccharum.Bot. Gaz. 119: 55–61.

    Google Scholar 

  • Roach, B.T. & J. Daniels, 1987. A review of the origin and improvement of sugarcane. In: COPERSUCAR International Sugarcane Workshop, COPERSUCAR, São Paulo, Brazil, pp. 1–31.

  • Rogers, J.S., 1972. Measures of genetic similarity and genetic distance. Studies in Genetics VII. Univ. Texas Publ. 7213: 145–153.

    Google Scholar 

  • SAS Institute, 1989. SAS/STAT r User's Guide, Version 6 ed., SAS Inst., Inc., Cary, NC.

  • Sobral, B.W.S., D.P.V. Braga, E.S. LaHood & P. Keim, 1994. Phylogenetic analysis of chloroplast restriction site mutations in the Saccharinae Griseb. subtribe of the Andropogoneae Dumort. tribe. Theor. Appl. Genet. 87: 843–853.

    Google Scholar 

  • Sreenivasan, T.V., B.S. Ahloowalia & D.J. Heinz, 1987. Cytogenetics. In D.J. Heinz (Ed.), Sugarcane improvement through breeding, Elsevier, New York, pp. 211–253.

    Google Scholar 

  • Sweeney, P.M. & T.K. Danneberger, 1994. Random amplified polymorphic DNA in perennial ryegrass: a comparison of bulk samples vs. individuals. HortScience 29: 624–626.

    Google Scholar 

  • Tao, Y., J.M. Manners, M.M. Ludlow & R.G. Henzell, 1993. DNA polymorphisms in grain sorghum (Sorghum bicolor (L.) Moench). Theor. Appl. Genet. 86: 679–688.

    Google Scholar 

  • Taylor, P.W.J., J.R. Geijskes, H.-L. Ko, T.A. Fraser, R.J. Henry & R.G. Birch, 1995. Sensitivity of random amplified polymorphic DNA analysis to detect genetic change in sugarcane during tissue culture. Theor. Appl. Genet. 90: 1169–1173.

    Google Scholar 

  • Virk, P.S., B.V. Ford-Lloyd, M.T. Jackson & H.J. Newbury, 1995. Use of RAPD for the study of diversity within plant germplasm collections. Heredity 74: 170–179.

    Google Scholar 

  • Ward, J.H., 1963. Hierarchical grou** to optimize an objective function. J. Am. Stat. Assn. 58: 236–244.

    Google Scholar 

  • Webster, R.D. & R.B. Shaw, 1995. Taxonomy of the native North American species of Saccharum (Poaceae:Andropogoneae). SIDA 16: 551–580.

    Google Scholar 

  • Yu, L.-X. & H.T. Nguyen, 1994. Genetic variation detected with RAPD markers among upland and lowland rice cultivars (Oryza sativa L.). Theor. Appl. Genet. 87: 668–672.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burner, D.M., Pan, YB. & Webster, R.D. Genetic diversity of North American and Old World Saccharum assessed by RAPD analysis. Genetic Resources and Crop Evolution 44, 235–240 (1997). https://doi.org/10.1023/A:1008631731506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008631731506

Navigation