Log in

Molecular Ecology and Evolution of Streptococcus thermophilus Bacteriophages—a Review

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Bacteriophages attacking Streptococcus thermophilus, a lactic acid bacterium used in milk fermentation, are a threat to the dairy industry. These small isometric-headed phages possess double-stranded DNA genomes of 31 to 45 kb. Yoghurt-derived phages exhibit a limited degree of variability, as defined by restriction pattern and host range, while a large diversity of phage types have been isolated from cheese factories. Despite this diversity all S. thermophilus phages, virulent and temperate, belong to a single DNA homology group. Several mechanisms appear to create genetic variability in this phage group. Site-specific deletions, one type possibly mediated by a viral recombinase/integrase, which transformed a temperate into a virulent phage, were observed. Recombination as a result of superinfection of a lysogenic host has been reported. Comparative DNA sequencing identified up to 10% sequence diversity due to point mutations. Genome sequencing of the prototype temperate phage φSfi21 revealed many predicted proteins which showed homology with phages from Lactococcus lactis suggesting horizontal gene transfer. Homology with phages from evolutionary unrelated bacteria like E. coli (e.g. lambdoid phage 434 and P1) and Mycobacterium φL5 was also found. Due to their industrial importance, the existence of large phage collections, and the whole phage genome sequencing projects which are currently underway, the S. thermophilus phages may present an interesting experimental system to study bacteriophage evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Botstein D., Ann NY Acad Sci 354, 484-491, 1980.

    Google Scholar 

  2. Casjens S., Hatful G., and Hendrix R., Sem Virol 3, 383-397, 1992.

    Google Scholar 

  3. Kutter E., Gachechiladze K., Poglazov A., Marusich E., Shneider M., Aronsson P., Napuli A., Porter D., and Mesyanzhinov V., Virus Genes 11, 285-297, 1996.

    Google Scholar 

  4. Repoila F., Tétat F., Bouet J.-Y., and Krisch H.M., EMBO J 13, 4181-4192, 1994.

    Google Scholar 

  5. Everson, T.C., Bull. Intern Dairy Fed 263, 24-28, 1991.

    Google Scholar 

  6. Peitersen, N., Bull. Intern Dairy Fed 263, 1-43, 1991.

    Google Scholar 

  7. Hill C., FEMS Microbiol Rev 12, 87-108, 1993.

    Google Scholar 

  8. Daly C., Fitzgerald G.F., and Davis R. in Venema G. (ed.) Lactic Acid Bacteria: Genetics, Metabolism and Application. Kluwer Acad. Publisher Dordrecht, 1996, pp. 3-14.

  9. Caldwell S.L., McMahon D.J., Oberg C.J., and Broadbent J.R., Appl Environ Microbiol 62, 936-941, 1996.

    Google Scholar 

  10. Accolas J.-P. and Spillmann H., J., Appl Bacteriol 47, 135-144, 1979.

    Google Scholar 

  11. Prevots F., Relano P., Mata M., and Ritzenthaler P., J Gen Microbiol 135, 3337-3344, 1989.

    Google Scholar 

  12. Neve H., Krusch U., and Teuber M., Appl Microbiol Biotechnol 30, 624-629, 1989.

    Google Scholar 

  13. Benbadis L., Faelen M., Slos P., Fazel A., and Mercenier A., Biochimie 72, 855-862, 1990.

    Google Scholar 

  14. Larbi D., Colurin C., Ronselle L., Decaris B., and Simonet J.M., Lait 70, 107-116, 1990.

    Google Scholar 

  15. Fayard B., University of Nancy, thesis 1993.

  16. Sebastiani H. and Jäger H., Milchwissenschaft 48, 25-29, 1992.

    Google Scholar 

  17. Sozzi T., Maret R., and Poulin J.M., Appl Environ Microbiol 32, 131-137, 1976.

    Google Scholar 

  18. Brüssow H., Frémont M., Bruttin A., Sidoti J., Constable A., and Fryder V., Appl Environ Microbiol 60, 4537-4543, 1994.

    Google Scholar 

  19. Carminati D. and Giraffa G., J Dairy Res. 59, 71-79, 1992.

    Google Scholar 

  20. Fayard B., Haefliger M., and Accolas J.-P., J Dairy Res. 60, 385-399, 1993.

    Google Scholar 

  21. Brüssow H. and Bruttin A., Virology 212, 632-640, 1995.

    Google Scholar 

  22. Brüssow H., Probst A., Frémont M., and Sidoti J, Virology 200, 854-857, 1994.

    Google Scholar 

  23. Singer B.S. and Westlye J., J Mol Biol 202, 233-243, 1988.

    Google Scholar 

  24. Davis R.W. and Parkinson J.S., J Mol Biol 56, 403-429, 1971.

    Google Scholar 

  25. Bruttin A. and Brüssow H., Virology 219, 96-104, 1996.

    Google Scholar 

  26. Highton P.J., Chang Y., and Myers R.J., Mol Microbiol 4, 1329-1340, 1990.

    Google Scholar 

  27. Larbi D., Decaris B., and Simonet J.-M., J Dairy Res 59, 349- 357, 1992.

    Google Scholar 

  28. Moineau S., Walker S.A., Holler B.J., Vedamuthu E.R., and Vandenbergh P.A., Appl Environ Microbiol 61, 2461-2466.

  29. Boyce J.D., Davidson B.E., and Hillier A.J., Appl Environ Microbiol 61, 4089-4098, 1995.

    Google Scholar 

  30. Kim S.G. and Batt C.A. Gene 98, 95-100, 1991.

    Google Scholar 

  31. Kim S.G., Bor Y.-C., and Batt C.A. J Dairy Sci 75, 1761-1767, 1992.

    Google Scholar 

  32. Mondragon A., Subbiah S., Almo S.C., Drottar M., and Harrison S.C., J Mol Biol 205, 189-200, 1989.

    Google Scholar 

  33. Birkeland N.-K. Can J Microbiol 40, 658-665, 1994.

    Google Scholar 

  34. Ziegelin G., Scherzinger E., Lurz R., and Lanka E. EMBO J 12, 3703-3708, 1993.

    Google Scholar 

  35. Hatfull G.F. and Sarkis G.J., Mol Microbiol 7, 395-405, 1993.

    Google Scholar 

  36. Martin A.C., Lopez R., and Garcia P., J Viro l 70, 3678-3687, 1996.

    Google Scholar 

  37. Lopez R., Garcia J.L., Garcia E., Ronda C., and Garcia P., FEMS Microbiol Lett 100, 439-448, 1992.

    Google Scholar 

  38. Wood B.J.B. and Holzapfel W.H. The genera of lactic acid bacteria. Blackie Academic and Professional, Glasgow 1992.

    Google Scholar 

  39. Schleifer K.H., Kraus J., Dvorak C., Klippe-Bälz R., Collins M.D., and Fischer W., System. Appl Microbiol 6, 183-195, 1985.

    Google Scholar 

  40. Jarvis A.W., Appl Environ Microbiol 47, 343-349, 1984.

    Google Scholar 

  41. Le Marrec C., van Sinderen D., Walsh L., Stanley E., Vlegels E., Moineau S., Heinze P., Fitzgerald G., and Fayard B., Appl Environ Microbiol 63, 3246-3253, 1997.

    Google Scholar 

  42. Neve H., Zenz K.I., Desiere F., Koch A., Heller K.J., and Brüssow H., Virology in press.

  43. Stanley E., Fitzgerald G.F., Le Marrec C., Fayard B., and van Sinderen D., Microbiology 143, 3417-3429, 1997.

    Google Scholar 

  44. Bruttin A., Desiere F., Lucchini S., Foley S., and Brüssow H., Virology 233, 136-148, 1997.

    Google Scholar 

  45. Desiere F., Lucchini S., Bruttin A., Zwahlen M.-C., and Brüssow, Virology 234, 372-382, 1997.

    Google Scholar 

  46. Desiere F., Lucchini S., and Brüssow H., Virology in press.

  47. Bruttin A., Desiere F., d'Amico N., Guérin J.-P., Sidoti J., Huni B., and Brüssow H., Appl Environ Microbiol 63, 3144-3150, 1997.

    Google Scholar 

  48. Bruttin A., Foley S., and Brüssow H., Virology 237, 148-158, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brüssow, H., Bruttin, A., Desiere, F. et al. Molecular Ecology and Evolution of Streptococcus thermophilus Bacteriophages—a Review. Virus Genes 16, 95–109 (1998). https://doi.org/10.1023/A:1007957911848

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007957911848

Navigation