Log in

Morphologies of coke deposited on surfaces of pure Ni and Fe-Cr-Ni-Mn alloys during pyrolysis of propane

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Morphologies of coke deposited on pure Ni and Fe-Cr-Ni-Mn alloy surfaces during pyrolysis of propane at 750–1000°C have been investigated in detail. It is found that surface scales developed initially on pure Ni and Fe-Cr-Ni-Mn alloy surfaces have no catalytic effect on deposition of filamentary coke. But metal or alloy substrates under cracked scales strongly catalyze nucleation and growth of filamentary coke along the cracks. Ni is more efficient to catalyze the growth of filamentary coke than Fe-Cr-Ni-Mn alloys. The structure of oxide scales has marked influence on distribution and size of filamentary coke deposited on alloy surfaces. Coking morphology is closely dependent of coking temperature and time. Either increasing coking temperature or prolonging coking time results in coking morphology changes from filamentary to spherical. Both dissolution/precipitation mechanism and direct nucleation and growth mechanism may make a contribution to the development of graphitic film coke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ibarra, Metall. Prog. 2 (1980) 62.

    Google Scholar 

  2. L. F. Albright and C. F. Mcconnell, “Advances in Chemistry Series,” No. 183 (Amer. Chem. Soc., Washington, D. C., 1979).

    Google Scholar 

  3. M. J. Graff and L. F. Albright, Carbon 26 (1982) 319.

    Google Scholar 

  4. N. S. Figoli, J. N. Beltramini, A. D. Barra, E. E. Martinelli, M. R. Sad and J. M. Parera, in “ACS Symposium Series,” Vol. 202 (Academic Press, New York, 1981) p. 239.

    Google Scholar 

  5. L. G. Tischer and M. S. Wing, in U.S. Patent no. 3,773,850 (1973).

  6. L. V. Talisman and M. A. Shaburov, Int. Chem. Eng. 8 (1968) 105.

    Google Scholar 

  7. L. T. Shinoda, M. B. Zaghloul, Y. Kondo and R. Tanaka, Trans. Iron Steel Inst. Jpn. 18 (1978) 139.

    Google Scholar 

  8. H. Wen-tai and R. W. K. Honeycombe, Mater. Sci. Technol. 1 (1985) 385.

    Google Scholar 

  9. G. D. Barbabela, L. H. Almeida, T. L. Silverira and I. May, Mater. Charact. 26 (1991) 193.

    Google Scholar 

  10. G. D. A. Soares, L. H. Almeida, T. L. Silveira and I. May, ibid. 29 (1992) 387.

    Google Scholar 

  11. C. W. Thomas, M. Borshevsky and A. N. Marshall, Mater. Sci. Technol. 8 (1992) 855.

    Google Scholar 

  12. J. Kelly, Ind. Heating 10 (1995) 42.

    Google Scholar 

  13. C. W. Thomas, K. J. Stevens and M. J. Ryan, Mater. Sci. Technol. 12 (1996) 469.

    Google Scholar 

  14. T. Shinohara, I. Kohchi, K. Shibata, J. Sugitani and K. Tsuchida, Werkst. Korros. 37 (1986) 410.

    Google Scholar 

  15. D. L. Trimm, Catal. Rev. Sci. Eng. 16 (1977) 155.

    Google Scholar 

  16. R. H. Kane, Corrosion 37 (1981) 187.

    Google Scholar 

  17. P. R. S. Jackson, D. J. Young and D. L. Trimm, J. Mater. Sci. 21 (1986) 4376.

    Google Scholar 

  18. H. B. Palmer, J. Lahaye and K. C. Hou, J. Phys. Chem. 72 (1968) 348.

    Google Scholar 

  19. E. L. Evans, J. M. Thomas, P. A. Thrower and P. L. Walker, Carbon 11 (1973) 441.

    Google Scholar 

  20. D. L. Trimm, Catal. Rev. Sci. Eng. 16 (1977) 155.

    Google Scholar 

  21. R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates and R. J. Waite, J. Catalysis 26 (1972) 51.

    Google Scholar 

  22. H. P. Boehm, Carbon 11 (1973) 583.

    Google Scholar 

  23. D. Nohara and T. Sakai, Ind. Eng. Chem., Fundam. 19 (1980) 340.

    Google Scholar 

  24. Y. Tamai, Y. Nishiyama and G. Takahashi, J. Chem. Soc. Japan. Inst. Soc. 70 (1967) 889.

    Google Scholar 

  25. S. M. Iring and P. L. Walker, Carbon 5 (1967) 399.

    Google Scholar 

  26. F. J. Derbyshire, A. E. B. Presland and D. L. Trimm, ibid. 10 (1972) 114.

    Google Scholar 

  27. R. T. K. Baker, D. J. C. Yates and J. A. Dumesic, “Coke Formation on Metal Surface” (ACS Symposium Series, Academic Press, New York, 202, 1981) p. 1.

    Google Scholar 

  28. S. Ando, Y. Okamoto, T. Shimoo and H. Kimura, Trans. Japan. Inst. Metall. 27 (1986) 441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X.Q., Yang, Y.S., He, W.Y. et al. Morphologies of coke deposited on surfaces of pure Ni and Fe-Cr-Ni-Mn alloys during pyrolysis of propane. Journal of Materials Science 35, 855–862 (2000). https://doi.org/10.1023/A:1004734021263

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004734021263

Keywords

Navigation