Log in

An immune gate of depression — Early neuroimmune development in the formation of the underlying depressive disorder

  • Review article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

The prevalence of depression worldwide is increasing from year to year and constitutes a serious medical, economic and social problem. Currently, despite multifactorial risk factors and pathways contributing to depression development, a significant aspect is attributed to the inflammatory process. Cytokines are considered a factor activating the kynurenine pathway, which leads to the exhaustion of tryptophan in the tryptophan catabolite (TRYCAT) pathway. This results in the activation of potentially neuroprogressive processes and also affects the metabolism of many neurotransmitters.

The immune system plays a coordinating role in mediating inflammatory process. Beginning from foetal life, dendritic cells have the ability to react to bacterial and viral antigens, stimulating T lymphocytes in a similar way to adult cells. Cytotoxicity in the prenatal period shapes the predisposition to the development of depression in adult life. Allostasis, i.e. the ability to maintain the body’s balance in the face of environmental adversity through changes in its behaviour or physiology, allows the organism to survive but its consequences may be unfavourable if it lasts too long.

As a result, Th lymphocytes, in particular T helper 17 cells, which play a central role in the immunity of the whole body, contribute to the development of both autoimmune diseases and psychiatric disorders including depression, as well as have an impact on the differentiation of T CD4+ cells intoThl7 cells in the later development of the child’s organism, which confirms the importance of the foetal period for the progression of depressive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Docherty AR, Edwards AC, Yang F, Peterson RE, Sawyers C, Adkins DE, et al. Age of onset and family history as indicators of polygenic risk for major depression. Depress Anxiety 2017;34(5):446–52. doi:https://doi.org/10.1002/da.22607.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andreade L, Caraveo - Anduaga JJ, Berglund P, Bijl RV, DeGraaf R, Vollebergh W, et al. The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) Surveys. Int J Methods Psychiatr Res 2003;12(1):3–21.

    Article  Google Scholar 

  3. Katon W, Ciechanowski P. Impact of major depression on chronic medical illness. J Psychosom Res 2002;53:859–63.

    Article  PubMed  Google Scholar 

  4. Talarowska M, Szemraj J, Kowalczyk M, Galecki P. Serum KIBRA mRNA and protein expression and cognitive functions in depression. Med Sci Monit 2016;15(january (22)):152–60.

    Google Scholar 

  5. Baca-Garcia E, Perez-Rodriguez MM, Sastre CD, Saiz-Riuz J, de Leon J. Suicidal behavior in schizophrenia and depression: a comparison. Schizophrenia Res 2005;75:77–81.

    Article  Google Scholar 

  6. Morris G, Berk M, Galecki P, Walder K, Maes M. The neuro-immune pathophysiology of central and peripheral fatigue in systemic immune-inflammatory and neuro-immune diseases. Mol Neurobiol 2016;53(2):1195–219.

    Article  CAS  PubMed  Google Scholar 

  7. Talarowska M, Szemraj J, Berk M, Maes M, Galecki P. Oxidant/antioxidant imbalance is an inherent feature of depression. BMC Psychiatry 2015;15:71, doi:https://doi.org/10.1186/sl2888-015-0454-5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lluis A, Ballenberger N, Illi S, Schieck M, Kabesch M, Illig T, et al. Regulation of TH17 markers early in life through maternal farm exposure. J Allergy Clin Immunol 2014;133(3):864–71.

    Article  CAS  PubMed  Google Scholar 

  9. Morris G, Berk M, Klein H, Walder K, Galecki P, Maes M. Nitrosative stress, hypernitrosylation, and autoimmune responses to nitrosylated proteins: new pathways in neuroprogressive disorders including depression and chronic fatigue syndrome. Mol Neurobiol 2017;54(6):4271–91.

    Article  CAS  PubMed  Google Scholar 

  10. Thomason ME. Structured spontaneity: building circuits in the human prenatal brain. Trends Neurosci 2018;41(1):1–3, doi:https://doi.org/10.1016/j.tins.2017.11.004.

    Article  CAS  PubMed  Google Scholar 

  11. **ault JB, Falissard B, Cote S, Berthoz S. A new approach of personality and psychiatric disorders: a short version of the Affective Neuro science Personality Scales. PLoS One 2012;7:e41489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holt PG, Clough JB, Holt BJ, Baron-Hay MJ, Rose AH, Robinson BW, et al. Genetic risk for atopy is associated with delayd postnatal maturation of T-cell competence. Clin Exp Allergy 1992;22:1093–9.

    Article  CAS  PubMed  Google Scholar 

  14. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007;131(6):1164–78.

    Article  CAS  PubMed  Google Scholar 

  15. Osugi Y, Hara J, Kurahashi H, Sakata N, Inoue M, Yumura-Yagi K, et al. Age related chnges in Surface antigens on peripherial lymphocytes of healthy children. Clin Exp Immunol 1995;100:543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Galecki P, Talarowska M. Neurodevelopmental theory of depression. Prog Neuropsychopharmacol Biol Psychiatry 2018;80(Pt C):267–72.

    Google Scholar 

  17. Maes M, Berk M, Goehler L, Song C, Anderson G, Galecki P, et al. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med 2012;10:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dominiguez-Andres J, Netea MG. Long - term reprogramming of the innate immune system. J Leukoc Biol 2018, doi:https://doi.org/10.1002/JLB.MR0318-104R.

    Google Scholar 

  19. Hanson LA. The mother - offspring dyad and the immune system. Acta Pediatr Esp 2000;89:252–8.

    Article  CAS  Google Scholar 

  20. Dasari V, Gallup M, Lemjabbar H, Maltseva I, McNamara N. Epithelial-mesenchymal transition in lung cancer: is tobacco the “smoking gun”? Am J Respir Cell Mol Biol 2006;35(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  21. Bale TL. Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 2015;16:332–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blaze J, Asok A, Roth TL. The long-term impact of adverse caregiving environments on epigenetic modifications and telomeres. Front Behav Neurosci 2015;9:79.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Beurel E, Lowell JA, Jope RS. Distinct characteristics of hippocampal pathogenic TH17 cells in a mouse model of depression. Brain Behav Immun 2018;73 (October):180–91. doi:https://doi.org/10.1016/j.bbi.2018.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petronis A. Epigenetics and unifying principle in the aetiology of complex traits and diesease. Nature 2010;465:721–7.

    Article  CAS  PubMed  Google Scholar 

  25. McGovern N, Shin A, Low D, Duan K, Yao LJ, Msallam R, et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 2017;546:662–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rinaudo P, Wang E. Fetal programming and metabolic syndrome. Annu Rev Physiol 2012;74:107–30.

    Article  CAS  PubMed  Google Scholar 

  27. Warner MJ, Ozanne SE. Mechanisms involved in the developmental programming of adulthood disease. Biochem J 2010;427:333–47.

    Article  CAS  PubMed  Google Scholar 

  28. Jiménez-Ferńandez S, Gurpegui M, Díaz-Atienza F, Pérez-Costillas L, Gerstenberg M, Correll CU. Oxidative stress and antioxidant parameters in patients with major depressive disorder compared to healthy controls before and after antidepressant treatment: results from a meta-analysis. J Clin Psychiatry 2015;76(December (12)):1658–67.

    Article  PubMed  Google Scholar 

  29. Galecki P, Galecka E, Maes M, Chamielec M, Orzechowska A, Bobińska K, et al. The expression of genes encoding for COX-2, MPO, iNOS, and SPLA2-IIA in patients with recurrent depressive disorder. J Affect Disord 2012;138(May (3)):360–6.

    Article  CAS  PubMed  Google Scholar 

  30. Maes M, Kubera M, Mihaylova I, Geffard M, Galecki P, Leunis JC, et al. Increased autoimmune responses against auto-epitopes modified by oxidative and nitrosative damage in depression: implications for the pathways to chronic depression and neuroprogression. J Affect Disord 2013;149(July (1-3)):23–9.

    Article  Google Scholar 

  31. Koutra K, Roumeliotaki T, Kyriklaki A, Kampouri M, Sarri K, Vassilaki M, et al. Maternal depression and personality traits in association with child neuropsychological and behavioral development in preschool years: mother-child cohort (Rhea study) in Crete, Greece. J Affect Disord 2017;217 (August):89–98.

    Article  PubMed  Google Scholar 

  32. Fernandes M, Stein A, Srinivasan K, Menezes G, Ramchandani PG. Foetal exposure to maternal depression predicts Cortisol responses in infants: findings from rural South India. Child Care Health Dev 2015;41(September (5)):677–86.

    Article  Google Scholar 

  33. Vadini F1, Tracanna E2, Polilli E3, Tontodonati M4, Ricci E5, Santilli F, et al. Posttraumatic stress in pregnant women with primary cytomegalovirus infection and risk of congenital infection in newborns. BJ Psych Open 2016;2(November (6)):373–6.

    Google Scholar 

  34. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 2013;30(4):297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Waisman A, Hauptmann J, Regen T. The role of IL-17 in CNS diseases. Acta Neuropathol 2015;129(5):625–37.

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Ho RC, Mak A. The role of interleukin (IL)-17 in anxiety and depression of patients with rheumatoid arthritis. Int J Rheum Dis 2012;15(April (2)):183–7.

    Article  CAS  PubMed  Google Scholar 

  37. Jha MK, Minhajuddin A, Gadad BS, Greer TL, Mayes TL, Trivedi MH. Interleukin 17 selectively predicts better outcomes with bupropion-SSRI combination: novel T cell biomarker for antidepressant medication selection. Brain Behav Immun 2017;66(November):103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matusevicius D, Kivisakk P, He B, Kostulas N, Ozenci V, Fredrikson S, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 1999;5:101–4.

    Article  CAS  PubMed  Google Scholar 

  39. Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 2010;469(1):6–10.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, et al. TGF-b-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008;453:236–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol 2017;18(6):612–21.

    Article  CAS  PubMed  Google Scholar 

  42. Slyepchenko A, Maes M, Kohler CA, Anderson G, Quevedo J, Alves GS, et al. T helper 17 cells may drive neuroprogression in major depressive disorder: proposal of an integrative model. Neurosci Biobehav Rev 2016;64(May):83–100.

    Article  CAS  PubMed  Google Scholar 

  43. Debnath M, Berk M. Thl7 pathway-mediated immunopathogenesis of schizophrenia: mechanisms and implications. Schizophr Bull 2014;40(November (6)): 1412–21.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wilson CB, Rowell E, Sekimata M. Epigenetic control of T-helper-cell differentation. Nat Rev Immunol 2009;9:91–105.

    Article  CAS  PubMed  Google Scholar 

  45. Nicolaides NC, Kyratzi E, Lamprokostopoulou A, Chrousos GP, Charmandari E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation 2015;22(1-2):6–19.

    Article  CAS  PubMed  Google Scholar 

  46. Wrobel A, Zebrowska-Lupina I, Wielosz M. Dexamethasone reduces locomotor stimulation induced by dopamine agonists in mice. Pharmacol Rep 2005;57 (4):451–7.

    CAS  PubMed  Google Scholar 

  47. Fowden AL, Forhead AJ. Endocrine mechanisms of intrauterine programming. Reproduction 2004;127:515–26.

    Article  CAS  PubMed  Google Scholar 

  48. Seckl JR, Meaney MJ. Glucocorticoid “programming” and PTSD risk. Ann N Y Acad Sci 2006;1071:351–78.

    Article  CAS  PubMed  Google Scholar 

  49. Maddox SA, Schafe GE, Ressler KJ. Exploring epigenetic regulation of fear memory and biomarkers associated with post-traumatic stress disorder. Front Psychiatry 2013;4:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kellermann NP. Epigenetic transmission of Holocaust trauma: can nightmares be inherited? Isr J Psychiatry Relat Sci 2013;50(1):33–9.

    PubMed  Google Scholar 

  51. Dunlavey CJ. Introduction to the hypothalamic-pituitary-adrenal axis: healthy and dysregulated stress responses, developmental stress and neurodegeneration. J Undergrad Neurosci Educ 2018;16(2):R59–60.

    PubMed  PubMed Central  Google Scholar 

  52. Aspeslagh S, Morel D, Soria J-C, Postel-Vinay S. Epigenetic modifiers as new immunomodulatory therapies in solid tumours. Ann Oncol 2018;29(4):812–24.

    Article  CAS  PubMed  Google Scholar 

  53. Griffiths BB, Hunter RG. Neuroepigenetics of stress. Neuroscience 2014;275:420–35.

    Article  CAS  PubMed  Google Scholar 

  54. Weinstein LI, Revuelta A, Pando RH. Catecholamines and acetylcholine are key regulators of the interaction between microbes and the immune system. Ann N Y Acad Sci 2015;1351:39–51.

    Article  PubMed  Google Scholar 

  55. Leber A, Teles A, Zenclussen A. Regulatory T Cells and their role in pregnancy. Am Journal Reprod Immunol 2010;63:445–59.

    Article  CAS  Google Scholar 

  56. Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and diesease. Altern Med Rev 2003;8:223–46.

    PubMed  Google Scholar 

  57. Sallusto F, Lanzavecchia A. Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur J Immunol 2009;39:2076–82.

    Article  CAS  PubMed  Google Scholar 

  58. Yssel H, Pene J. Interleukin-22-producing T-cells: a specialized population involved in skin inflamation. Immunol Cell Biol 2009;87:574–6.

    Article  Google Scholar 

  59. Sanchez-Guajardo V, Tanchot C, O’Malley JT, Kaplan MH, Garcia S, Freitas AA. Agonist - driven development of CD4+, CD25+, Foxp3+ regulatory T cells requires a second signal mediated by Stat6. J Immunol 2007;178:7550–6.

    Article  CAS  PubMed  Google Scholar 

  60. Ziegler SF, Buckner JH. FOXP3 and the regulation of Treg/Thl7 differentiation. Microbes Infect 2009;11:594–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. O’shea JJ, Paul WE. Mechanism underlying lineage commitment and plasticity of helper CD4+T cells. Science 2010;327:1098–102.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bluestone J, Mackay C, O’shea J, Stockinger B. The functional plasticity of T cell subsets. Nat Rev Immunol 2009;9:811–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eilat E, Mendlovic S, Doron A, Zakuth V, Spirer Z. Increased apoptosis in patients with major depression: a preliminary study. J Immunol 1999;163:533–4.

    Article  CAS  PubMed  Google Scholar 

  64. Ivanova SA, Semke VY, Vetlugina TP, Rakitina NM, Kudyakova TA, Simutkin GG. Signs of apoptosis of immunocompetent cells in patients with depression. Neurosci Behav Physiol 2007;37:527–30.

    Article  CAS  PubMed  Google Scholar 

  65. Szuster-Ciesielska A, Slotwinska M, Stachura A, Marmurowska-Michalowska H, Dubas-Slemp H, Bojarska-Junak A, et al. Accelerated apoptosis of blood leukocytes and oxidative stress in blood of patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:686–94.

    Article  CAS  PubMed  Google Scholar 

  66. Sakami S, Nakata A, Yamamura T, Kawamura N. Psychological stress increases human Tcell apoptosis in vitro. Neuroimmunomodulation 2002;10:224–31.

    Article  CAS  PubMed  Google Scholar 

  67. Shi Y, Devadas S, Greeneltch KM, Yin D, Allan Mufson R, Zhou JN. Stressed to death: implication of lymphocyte apoptosis for psychoneuroimmunology Brain. Behav Immun 2003;17:S18–26.

    Article  CAS  Google Scholar 

  68. Beissert S, Schwarz A, Schwarz T. Regulatory T cells. J Invest Dermatol 2006;126:15–24.

    Article  CAS  PubMed  Google Scholar 

  69. Mellor AL, Munn D, Chandler P, Keskin D, Johnson T, Marshall B, et al. Tryptophan catabolism and T cell responses. Adv Exp Med Biol 2003;527:27–35.

    Article  CAS  PubMed  Google Scholar 

  70. McEwen BS, Biron CA, Branson KW, Bulloch K, Chambers WH, Dhabhar FS, et al. The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Res Brain Res Rev 1997;23:79–133.

    Article  CAS  PubMed  Google Scholar 

  71. Pariante CM, Miller AH. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 2001;49:391–404.

    Article  CAS  PubMed  Google Scholar 

  72. Ickovics JR, Hamburger ME, Vlahov D, Schoenbaum EE, Schuman P, Boland RJ, et al. Mortality, CD4 cell count decline, and depressive symptoms among HIV- seropositive women: longitudinal analysis from the HIV Epidemiology Research Study. JAMA 2001;285:1466–74.

    Article  CAS  PubMed  Google Scholar 

  73. Soo-Jeong K, Hyojung L, Gihyun L, Się-Joong O, Min-Kyu S, Insop S, et al. CD4 +CD25+ regulatory T cell depletion modulates anxiety and depression-like behaviors in mice. PLoS One 2012;7(7):e42054.

    Article  Google Scholar 

  74. Goehler LE, Gaykema RP, Hansen MK, Anderson K, Maier SF, Watkins LR. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci 2000;85:49–59.

    Article  CAS  PubMed  Google Scholar 

  75. Romeo HE, Tio DL, Rahman SU, Chiappelli F, Taylor AN. The glossopharyngeal nerve as a novel pathway in immune-to-brain communication: relevance to neuroimmune surveillance of the oral cavity. J Neuroimmunol 2001;115:91–100.

    Article  CAS  PubMed  Google Scholar 

  76. Pan W, Banks WA, Kastin AJ. Permeability of the blood-brain and bloodspinal cord barriers to interferons. J Neuroimmunol 1997;76:105–11.

    Article  CAS  PubMed  Google Scholar 

  77. Esposito P, Chandler N, Kandere K, Basu S, Jacobson S, Connolly R, et al. Corticotropin -releasing hormone and brain mast cells regulate blood- brainbarrier permeability induced by acute stress. J Pharmacol Exp Ther 2002;303:1061–6.

    Article  CAS  PubMed  Google Scholar 

  78. Thale C, Kiderlen AF. Sources of interferon-gamma (IFN-gamma) in early immune response to Listeria monocytogenes. Immunobiology 2005;210:673–83.

    Article  PubMed  Google Scholar 

  79. Morris G, Fernandes BS, Puri BK, Walker AJ, Carvalho AF, Berk M. Leaky brain in neurological and psychiatric disorders: drivers and consequences. Aust N Z J Psychiatr 2018;52(October (10)):924–48.

    Article  Google Scholar 

  80. Laurie C, Reynolds A, Coskun O, Bowman E, Gendelman HE, Mosley RL. CD4+ T cells from Copolymer-1 immunized mice protect dopaminergic neurons in the l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neuroimmunol 2007;183:60–8.

    Article  CAS  PubMed  Google Scholar 

  81. Britschgi M, Wyss-Coray T. Systemic and acquired immune responses in Alzheimer’s disease. Int Rev Neurobiol 2007;82:205–33.

    Article  CAS  PubMed  Google Scholar 

  82. Aktas O, Ullrich O, Infante-Duarte C, Nitsch R, Zipp F. Neuronal damage in brain inflammation. Arch Neurol 2007;64:185–9.

    Article  PubMed  Google Scholar 

  83. Napoli I, Neumann H. Microglial clearance function in health and disease. Neuroscience 2009;158:1030–8.

    Article  CAS  PubMed  Google Scholar 

  84. Jankord R, Herman JP. Limbic regulation of hypothalamo- pituitaryadrenocortical function during acute and chronic stress. Ann N Y Acad Sci 2008;1148:64–73.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rothermundt M, Arolt V, Fenker J, Gutbrodt H, Peters M, Krichner H. Different immune patterns in melancholic and non-melancholic major depression. Eur Arch Psychiatry Clin Neurosci 2001;251:90–7.

    Article  CAS  PubMed  Google Scholar 

  86. Barnes GL, Woolgar M, Beckwith H, Duschinsky R. John Bowlby and contemporary issues of clinical diagnosis. Attachment (Lond) 2018;12(1):35–47.

    PubMed  Google Scholar 

  87. Kinnally EL, Capitanio JR. Prenatal early experiences influence infant development through non-social mechanisma inRhesus Macaques. Front Zool 2015;(12 Suppl 1):S14.

    Google Scholar 

  88. Hodes GE, Menard C, Russo SJ. Integrating Interleukin-6 into deprssion diagnosis and treatment. Neurobiol Stress 2016;4:15–22.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Diego MA, Field T, Hart S, Hernandez-Reif M, Jones N, Cullen C, et al. Facial expressions and EEC in infants of intrusive and withdrawn mothers with depressive symptoms. Depress Anxiety 2002;15(1):10–7.

    Article  PubMed  Google Scholar 

  90. Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 2007;370:851–8.

    Article  PubMed  Google Scholar 

  91. Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N. Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int Clin Psychopharmacol 2006;21:227–31.

    Article  PubMed  Google Scholar 

  92. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 2006;11:680–4.

    Article  CAS  PubMed  Google Scholar 

  93. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet 2006;367:29–35.

    Article  CAS  PubMed  Google Scholar 

  94. Kenis G, Maes M. Effects of antidepressants on the production of cytokines. Int J Neuropsychopharmacol 2002;5:401–12.

    Article  CAS  PubMed  Google Scholar 

  95. Fleming P, Roubille C, Richer V, Starnino T, McCourt C, McFarlane A, et al. Effect of biologies on depressive symptoms in patients with psoriasis: a systematic review. J Eur Acad Dermatol Venereol 2015;29(6):1063–70.

    Article  CAS  PubMed  Google Scholar 

  96. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 2013;70(January (1)):31–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Galecki P, Szemraj J, Bierikiewicz M, Zboralski K, Galecka E. Oxidative stress parameters after combined fluoxetine and acetylsalicylic acid therapy in depressive patients. Hum Psychopharmacol 2009;24(4):277–86.

    Article  CAS  PubMed  Google Scholar 

  98. Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Derkowska I, Juscihska J. Therapy of type 1 diabetes with CD4+CD25 high CD127-regulatory T cells prolongs survival of pancreatic islets — results of one year follow-up. Clin Immunol 2014;153:23–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Kowalczyk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalczyk, M., Szemraj, J., Blińniewska, K. et al. An immune gate of depression — Early neuroimmune development in the formation of the underlying depressive disorder. Pharmacol. Rep 71, 1299–1307 (2019). https://doi.org/10.1016/j.pharep.2019.05.022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2019.05.022

Keywords

Navigation